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Abstract

This paper presents a cognitive-motivated approach for classification of
3D objects according to the functional paradigm. We hypothesize that classi-
fication can be achieved through simulation of actions meant to verify whether
a candidate object fulfills a certain functionality. This paper presents ABSV:
Agent Based Simulated Vision, a novel approach that tries to imitate the way
humans perform certain classification tasks. ABSV can determine the cate-
gory of a candidate object by verifying certain functional properties that the
object should possess. Unlike conventional functional approaches, it uses
virtual environment to simulate the interaction between the object and vari-
ous examination agents to expose those functionalities. To demonstrate our
approach we have implemented it for the recognition of several object cat-
egories. We achieved promising classification results using both complete
CAD models and real 3D scanned data generated from a single view point.
We believe that the concepts introduced in ABSV will influence significantly
the design of robot classification systems.

1 Introduction
Object classification is considered very difficult mainly because of the huge variety in the
shape of objects that belong to the same category (see Figure 1). Instead of focusing on
the object’s shape, the functional approach concentrates on the way a it is used or acted
upon, assuming a direct link between object’s functionality and its category. Traditional
functional approaches often assume that the object is given as a set of labeled parts. The
concept of functionality is then simplified by decomposing it into a series of rather simple
geometric measurements intended to quantify the properties of each part and to analyze
the relation between them [11]. For instance, classifying object as a chair requires finding
two surfaces (whose dimensions and relative orientation are in specific range) that may
supply seat and back support.

We believe that the connection between object’s functionality and the agent that ben-
efits from that functionality should be emphasized. We propose the ABSV (Agent Based
Simulated Vision) approach as a way for classifying objects using simulation. We believe
that in some scenarios where we are asked to classify an object, a process of simulation is
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happening in our brain, whose purpose is to check for object’s functionality. This claim
is partly supported by cognitive psychology. According to motor-cognition we can con-
sciously imagine or simulate actions. These actions contribute to the representation we
build for the different objects we come up against.

PET studies that were done in [6] show that during perceptual analysis, in which no
action occurs, we use resources that pertain to the dorsal pathway (which believed to be
connected to actions). Other experiments [13] suggest that subjects perform unconscious
simulation before every task, and that the response time increases with the difficulty of
the task. A similar pattern of activation of action-related areas is found even in the im-
plicit cases of observing actions or even hearing action verbs [10]. Moreover, simulation
theory [12] suggests that we understand the action performed by others simply by simu-
lating these actions. This idea was encouraged by the discovery of the mirror-neurons in
monkeys [12]. Mirror-neurons respond when a monkey executes certain kinds of actions
or when it perceives the same actions being performed by another monkey. The mirror-
system discovered in humans is the believed to be the area that allows us to replicate
action performed by others.

As mentioned, we believe that functionality can be inferred through simulation. For
any functionality there should be a corresponding virtual agent. Verifying whether an
object possesses certain functionality will require simulating the interaction between that
object and its corresponding virtual agent. For instance, the corresponding agent of the
”seatable” functionality (i.e. something we can seat on) is a virtual human model. By
embodying that model in the system, we can classify objects as chairs simply by trying
to make the virtual human seat on them. Note that the use of an agent encapsulates the
geometric measurements done in traditional functional approaches because if the agent
can seat on an object it means that the supporting surfaces are large enough, their relative
orientation is suitable for human seating and so on.

2 Related Work
The problem of classification concerns the association of visual input with a category.
During the years, several classification approaches have emerged. Part-based recognition
approaches [2, 3], represent object categories as a set of parts in a possibly deformable
configuration. Recent works used probabilistic category models and employed learning
algorithms to learn the model parameters. Different works vary widely on the way parts
are detected and represented and on the way learning is employed. For instance [7] models
categories as flexible constellation of parts and uses a scale invariance feature-detector,
while [1] represents images of the training set using a vocabulary that is automatically
constructed from a set of sample images of objects that belong to the category of interest.
Learning object category often requires huge training set.

Another group of works concentrates on 3D object recognition. The spectrum in-
cludes variety of works such as skeleton, medial axis representation, spherical harmonic
representation and regional shape descriptors. The part based approach is exploited here
as well. For instance, [9] determines the object class using learned parts classes and part
to object mapping. In robotics, statistical machine learning often employs active vision
techniques (or active perception) in which the robot is learning through manipulating ob-
jects [8]. Others works use learning by imitation or by observation [5].
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Figure 1: Part of 3D CAD DB of chairs.

According to function-based approaches, classification should refer to the functional
description of the object rather then to the structural one. A representative work is [14],
that presents a classification system for 3D objects under the domains of furniture, dishes
and hand tools. Functional properties of each class were defined using knowledge prim-
itives that imply about shape, for instance the height, area and relative orientation of
surfaces. Some works [11] have tried to reason about the functionality of object’s parts.
A hummer, for instance, is recognized by a handle and a striking surface. Other works [4]
have attempted to determine functionality from motion.

Our work uses the function-based paradigm, according which a category is repre-
sented by functionalities that need to be fulfilled. By embodying the receivers of these
functionalities as agents within a virtual environment, we will be able to look for fully-
functional configurations in which the agents satisfy the object’s functionality. The use
of agents encapsulate knowledge primitives and allows cognitively based simulation of
actions. By imitating the way we hypothesize humans perform classification, we can di-
rectly classify objects without the need of pre-segmentation or complex shape model of
categories.

3 Category Model
According to our notation, each category is characterized by n functionalities that can
be either primary or secondary. Primary functionalities represent the ”essence” of the
category while secondary functionalities represent other desirable attributes that can be
verified directly (e.g., stability). We hypothesize that primary functionality can be veri-
fied through simulation with a corresponding agent. The virtual 3D-agent serves as ex-
amination object that exposes the primary functionality of the candidate object through
interaction. We refer to a category as active-category in case that at least one primary
functionality requires the instances of the category to be active during the simulation (e.g.,
in the case of scissors). Otherwise, we will refer to it as passive-category. In that case, all
primary functionalities can be verified using one static pose of the candidate object.

Our approach is specifically appropriate for man-made objects that were designed to
fulfill certain functionalities. These functionalities can be revealed by embodying the re-
ceivers of each functionality as virtual agents. Current work will concern classifying such
designed-objects, with obvious functionalities, that belong to passive-categories. Dur-
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ing simulation, the candidate object will be static, while the different agents will search
the configuration space looking for configurations that justify the corresponding primary-
functionalities. The interaction will take place in a 3D virtual environment by means of
collision detection.

3.1 Configuration Space
Every agent has at least six degrees of freedom (DOF’s) referred as the global-DOF’s.
These global-DOF’s pertain to the global rotation and translation of the agent in the vir-
tual environment. In addition, an agent may have additional inner DOF’s, connected to
its inner structure. For each primary-functionality, we look for specific configuration jus-
tifying it. For instance, verifying that an object is ”seatable” (a primary-functionality
of the category chair) involves looking for configuration in which a virtual human (i.e.,
the agent) is seating on that object. Later, we will see how the search in the configura-
tion space can be simplified using a cognitively based search that concern searching for
semi-functional configurations.

3.2 Category Model Structure
Since every agent is unique and meant to expose certain functionality, we need to de-
fine a corresponding environment for every agent. Category model is represented as pair
C = 〈F,E〉, where F is the set of n characterizing functionalities and E is the set of m cor-
responding virtual environments in which the simulation of the m primary-functionalities
will occur. The secondary functionalities { fm+1, .., fn} will be verified directly, without
the need for agent simulation. Environment Ei should contain the following:
Agent - 3D model of the virtual agent Ai needed for verifying the existence of the pri-
mary functionality fi. Embodying the agent’s model encapsulates the various knowledge
primitives and ensures that the object can fulfill the certain functionality.
Maximal configuration - This is the initial configuration of the agent. In a way, it ex-
presses a cognitive-insight, by representing an initial inner configuration that can lead to
almost any other inner configuration using only steepest-descent-like iterative process.
Anchor predicate - Indicates on semi-functional configurations, from which the iterative
process mentioned above can begin. Searching for configurations that satisfy the anchor
predicate allows us to perform a functional-pruning of the configuration space.
Iterative process - Takes place when the anchor predicate is satisfied. It involves a
steepest-descent-like process of several inner DOFs of the agent. If it ends within a goal
configuration, it implies that the specified primary-functionality is fulfilled. The cate-
gory model should specify the exact iterative process (the DOFs involved, their order of
activation etc).
Goal state predicate - The category-model should hold a predicate indicating goal con-
figurations. Goal configuration is a configuration in which the specific primary-functionality
is fulfilled.

4 Object Classification Framework
We are interested in classifying objects into categories. For that purpose, the system
should hold a category-model for every category it needs to be familiar with. Given
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an object, its primary-functionalities are revealed through interaction with appropriate
agents, rather than by examining the object alone. Using a cognitively-motivated heuris-
tic we manage to perform an efficient two-phase search for configurations that fulfill the
primary functionalities. In the first phase, the agent is searching the 6-D global-DOF’s
configuration space, looking for semi-functional configuration. The second phase in-
volves a steepest-descent like iterative process that iteratively changes the inner-DOF’s of
the agent, using a cognitively motivated heuristic, towards the goal configuration which
satisfies the functionality. Both the initial state, the semi-functional configurations that
we look for and the iterative process are agent-specific and should be explicitly prede-
fined within the specific environment of the category model. They all motivated by the
way humans try to fulfill that specific functionality.

Glass, for example, is characterized by three functionalities: the two primary func-
tionalities graspable and container, and the secondary functionality stable. Classifying
an object as a glass involves two simulations with two different agents, one for each
primary-functionality, and a direct check for object stability (e.g., by means of calcu-
lating the center of mass). Grasping, for instance, is verified using a simulation of the
interaction with virtual human palm (the corresponding agent). The maximal configura-
tion is defined as that of the virtual palm wide open. In a sense, when starting the iterative
process from that configuration we can grasp every object which is graspable. The anchor
predicate indicates on a contact between the object and the center of the virtual palm,
a point from which the iterative process of grasping can begin. It is done by iteratively
closing the fingers (the inner DOFs) and checking for goal state (full grasping) at the end
of the process.

Figure 2: Chair classification using simulation of embodied virtual human agent

4.1 Meta Algorithm
We will now introduce a general algorithm for object classification. Given an object and
a category, Algorithm 1 determines whether the object is an instance of that certain cat-
egory. It first looks for semi-functional configurations in the global-DOF’s configuration
space and then performs an iterative process from each one of them towards the goal
configuration.

Notice that the set of final configurations { f inali}m
i=1 represent the configurations that

best demonstrate each functionality f i. Hence, configuration f inali can help the robot
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Algorithm 1 : Is Instance Of(Ob j,C)
1: for all primary functionality fi ∈C do
2: Position Ai in its maximal-configuration coni
3: S⇐ Search Semi Functional Cons(Ob j,Ei)
4: Si ⇐{}
5: for all con ∈ S do
6: f inal ⇐ Iterate Inner DOF(con,Ei)
7: if Goalp( f inal) then
8: Si ⇐ 〈 Grade( f inal), f inal〉
9: end if

10: end for
11: if Si = /0 then
12: return FALSE
13: end if
14: f inali ⇐ con with the highest grade in Si
15: end for
16: return TRUE

determine the best way to position itself in order to fulfill that certain functionality. For
instance, it can recommend the best way to grab an object, or the the most suitable way
to seat on a chair.

4.2 Finding Semi-Functional Configurations Using Collision
Detection

Searching for semi-functional configurations involves collision detection queries for each
configuration in the searching grid. Algorithm 2 searches only the 6-D global-DOF’s
configuration space and returns the set of semi functional configurations. It performs
two collision detection tests for each configuration on the grid. The first one is meant
to eliminate configurations which are not collision free. The second involves ε-contact
test between the agent and the object. Its purpose is to test whether some parts of the
agent, that imply semi-functionality, are close enough to the object to be considered as
contacting it. The ε-contact test is achieved by extending the 3D-object model by ε and
checking whether it collides with the agent. Notice that the extended object could be
defined only once during the classification process.

The agent model should contain indications of unique areas that contacting them im-
plies that certain semi-functional configuration is reached. On the other hand, goal con-
figuration implies on full-functionality and therefore in that configuration there should
be contact between the object and all the predefined parts of the agent. As mentioned,
both goal and semi functional configurations are verified by means of rather simple col-
lision detection queries. Our collision detection implementation has relied on a bound-
ing volume hierarchy (BVH) model representation using axis-aligned bounding boxes
(AABB’s). Specifically, we have used the SOLID library [15] for collision detection
of three-dimensional objects undergoing rigid motion and deformation. SOLID allows
quick update of the BVH as the model is deformed and is especially suited for collision
detection of objects described in VRML, such as the ones which we use.
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Algorithm 2 : Search Semi Functional Cons(Ob j,E)
1: S⇐{}
2: V ⇐ Bounding Box(Ob j)
3: CS⇐ {6-D global-DOF configuration space within V}
4: for all con ∈CS do
5: if not Collision Free(con,Ob j,Agent) then
6: CONTINUE
7: end if
8: if Collision Free(con,Extend(Ob j,ε),Agent) then
9: CONTINUE

10: end if
11: S⇐ con
12: end for
13: return S

5 Results
This section presents experimental result for classification of chairs and beds 3D CAD-
models according to ABSV. The first part will present classification of objects using the
embodiment of a virtual human agent. The second part will show an example for non-
human agent. Working with real data scanned from single view-point will be presented in
the last part.

5.1 Classifying Objects Using Virtual Human
As mentioned, every category-model should contain agent-model, maximal-configuration
and iterative process description. We isolate semi-functional and goal configurations us-
ing collision-detection queries with specific parts of the model.

The maximal-configuration for the category ”seatable” is similar to seating position
except that the arms, legs and back are stretched forward. The agent is then translated
and rotated within a bounding volume surrounding the object, looking for configurations
satisfying the anchor predicate which indicates on contact between the object and the
”seating areas” of the agent (marked in red). Once reaching the semi-functional config-
uration, the virtual-human can start an iterative process of enhancing its comfortability
by leaning back and dropping down his legs and arms. Basically, almost every seating-
configuration is reachable from the initial configuration, hence it is called the maximal-
configuration. Notice that the iterative process is not a search within the inner-DOF’s
configuration space, but a rather quick and one-directional process.

The results for different chair-models are presented in Figure 2. The figure presents
the configurations with the best score that the agent has found. The score is based on the
functionality-level of the final configuration. We can determine a threshold from which
configurations are considered to be legal. Lowering that threshold will allow the robot to
improvise configurations that are semi-functional. For example, Figure 3 presents con-
figurations with lower scores that shows the variability of the solutions. Some of these
configurations are definitely legitimate improvisations of seating positions.

Figure 4 presents the results for beds classification. In that case, there were several
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Figure 3: Some variations that got lower scores but show the variability of the solution

fully-functional configurations in which the agent is laying on the bad in different orien-
tations. The anchor predicate for the bed category is the same as the one of chair category.
The categories differ in the maximal state and the iterative process.

Figure 4: Beds classification using virtual human and Bookshelves classification using
embodied virtual book

5.2 Classifying Using Other Agents
Although many functionalities involve virtual human agent or parts of it (i.e., virtual palm
for functionality graspable), the ABSV classification approach is not confined to that
agent or the functionalities driven from it. Bookshelf, for example, is a place to lay books.
Therefore, a virtual book agent is required to expose the functionality of instances of that
category. A candidate object is scored by the number of configurations in which the agent
(i.e, the virtual book) is supported. Figure 4 presents the results of the classification. In
both cases shown, we have found a place to lay down a book.

5.3 Working With Real Data
This section presents the result of classifying real-data objects. ABSV is satisfied with real
3D data coming from the robot sensors and does not require the object to be given as a set
of labeled parts. The objects were scanned from a single view-point and therefore much
of the object is obscured due to self occlusions. Figure 5 shows part of the real-chairs
DB while Figure 6 shows the results of the scanned objects within the virtual simulation
environment. The scanner has produced a 3D points cloud which were merely connected
to generate a 3D triangle mesh. The use of simulations helps facing the difficulty of
self occlusions and noise (i.e, the noise in the mesh, holes within the surfaces etc.). As
before, the agent is searching for fully-functional configurations. In case that there exists
a noticeable seating configuration from the scanning view-point, that configuration will
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be found during the simulation. As can be seen from Figure 7, view points from which
there is sufficient information on object’s structure allow correct classification.

Figure 5: Part of the real-chairs DB

Figure 6: Part of the real-data models generated by single view-point scanning

6 Conclusion
We have presented a cognitively-motivated approach for functional 3D object classifi-
cation using embodiment of virtual agents. Classification is achieved by simulating the
interaction between the candidate object and several embodied agents. We have mod-
eled each category by a set of characterizing functionalities and used simulation to look
for evidence-configurations showing fulfillment of these functionalities. Each functional-
ity had its own corresponding agent which is the receiver of the functionality. We have
presented a two phase cognitively-motivated searching algorithm. Our algorithm uses
functional pruning of the search space by isolating semi functional configurations, from
which a one-directional steepest-descent like process can begin. Finding semi-functional
and goal configurations involves only two quick collision detection queries supported by
our deformed BVH-tree. We have tested the algorithm with different categories and used
both CAD objects with complete model and real-data objects that were scanned from a
single view-point. The algorithm managed to classify the objects correctly despite noise
and self occlusions.
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Figure 7: Classification of real-data chairs using embodiment of virtual human agent
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