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Abstract

We propose here a new approach to addressing
problems related to visual motion, namely the
purposive approach [4]. Instead of considering
the various visual motion tasks as applications
of the general structure from motion module,
we consider them as independent problems and
we directly seek solutions for them. As a re-
sult we can achieve unique and robust solutions
without having to compute optic flow and with-
out requiring a full reconstruction of the visual
space, because it is not needed for the tasks. In
the course of the exposition, we present novel
solutions to various important visual tasks re-
lated to motion, such as the problems of motion
detection by a moving observer, passive naviga-
tion, relative-depth computation, 3-D motion
estimation, and visual interception, using as in-
put only the spatial and temporal derivatives
of the image intensity function. It turns out
that the spatiotemporal derivatives of the im-
age (i.e. the so-called normal flow) do not seem
to be capable of solving the general “structure
from motion” problem. They are, however, suf-
ficient to provide robust algorithms for the so-
lution of many interesting visual tasks that do
not require the full solution, but only part of it.
"The ability to create robust nontrivial behav-
tors suggests the possibility that visual percep-
tion could be studied as intelligent behavior.
We point out some of the benefits and draw-
backs of this paradigm that studies vision as a
set of behaviors that recover the visible world
partially, but well enough to carry out a task
(purposive, animate or behavioral vision), and
We contrast it to the traditional paradigm of
treating vision as a general recovery problem.
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tion, target pursuit, and many other problems related to
robotics, teleconferencing, etc., would be simple applica-
tions of a structure from motion module. The problem
has been formulated as follows: Given a sequence of im-
ages taken by a monocular observer (the observer and/or
parts of the scene could be moving), to recover the shapes
(and relative depths) of the objects in the scene, as well
as the (relative) 3-D motions of independently moving
bodies.

The problem has been formulated and usually treated
as an aspect of the general task of recovering 3-D in-
formation from motion [25, 19]. The majority of the
proposed solutions to date are based on the following
modular and hierarchical approach:

1. First, one computes the optic flow on the image
plane, i.e. the velocity with which every image point
appears to be moving.}

2. Then segmentation of the flow field is performed and
different moving objects are identified on the image
plane. From the segmented optic flow one then com-
putes the 3-D motion with which each visible sur-
face is moving relative to the observer. (Assuming
that an object moves rigidly, a monocular observer
can only compute its direction of translation and its
rotation, but not its speed.)

3. Finally, using the values of the optic low along with
the results of the previous step, one computes the
surface normal at each point, or equivalently, the
ratio Z; /Z; of the depths of any two points i and j.

The reason that most approaches have followed the
above three-step approach is two-fold. The first is due
to the formulation of the problem, which insists on re-
covering a complete relative depth map and accurate
three-dimensional motion. The second is due to the
fact that the constraints relating retinal motion to three-
dimensional structure involve 3-1) motion in a nonlinear
manner that does not allow separability. For examples
of such approaches, see [1, 34, 23, 30]. However, the
past work in this paradigm, despite its mathematical el-
egance, is far from being useful in real-time navigational
systems, and such techniques have found few or no prac-

'For clarity, we consider only the differential case. In the
case of long range motion one computes discrete displace-
ments, but the analysis remains essentially the same.




a: feature before motion

B: feature after motion

Figure 1: The aperture problem. Point A could have
moved to B,C,D,F. However, whatever the value of
the irnage motion vector is, its projection on the normal
to a is always AD (known).

tical applications.? Consequently, this approach cannot
be used yet to explain the ability of biological organisms
to handle visual motion.

There exist many reasons for the limitations of the op-
tic flow approach, related to all three steps listed above.
To begin, the computation of optic flow is an ill-posed
problem, i.e. unless we impose additional constraints, we
cannot estimate it [19]. Such constraints, however, im-
pose a relationship on the values of the flow field which
is translated into an assumption about the scene in view
(for example, smooth). Thus, even if we are capable of
obtaining an algorithm that computes optic flow in a
robust manner, the algorithm will work only for a re-
stricted set of scenes. The only available constraint at
every point (z,y) of the changing image I(z,y,t) for the
flow (u, v) is the constraint Ipu+I,v+1, = 0 [21], where
the subscripts denote partial differentiation. This means
that we can only compute the projection of the flow on
the gradient direction ((I,,I,) - (u,v) = =1I;), L.e. the
so-called normal flow. More graphically, it means that
il a feature (for example, an edge segment) in the im-
age moves to a new position, we don’t know where every
point of the segment moved to (see Figure 1); we only
know the normal flow, 1.e. the projection of the flow on
the image gradient at that point.

A second reason has to do with the very essence of
optic flow. An optic flow field is the vector field of ap-
parent velocities that are associated with the variation
of brightness on the image plane. Clearly, the scene is
not involved in this definition. One would hope that
optic flow would be equivalent to the so-called motion
field [19], which is the (perspective) projection on the
image plane of the three-dimensional velocity field as-
sociated with each point of the visible surfaces in the
scene. However, the optic flow field and the motion field
are not equal in general. Verri and Poggio [36] reported
some general results in an attempt to quantify the differ-
ence between the optic flow and motion fields. Although
we don’t yet have necessary and sufficient conditions for
the equality of the two fields, it is clear that they are
equal only under specific sets of restrictive conditions.

A third reason is related to the second step of the ex-
isting algorithms for structure from motion. These algo-
rithms attempt to first recover three-dimensional motion

“Possible exceptions are photogrammetry and semiau-
tonomous applications requiring a human operator.
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before they proceed to recover relative depth, and (};
problem of 3-D motion appears to be very sensitive ils
the presence of small amounts of noise in the Input (ﬁo:
or displacements) {31, 38, 1, 2].

In [31] several experiments as well as comparisons with
various algorithms were made and the finding was that
an average error of 1% to 2% in the input (retinal corye..
spondence) can create an error of about 100% in the ey
timated parameters. An important question to ask then
is what makes this problem unstable, and to seek ways
to address any inherent instabilities that might arige.
There is recent work towards this direction but difficulq
questions still remain.

But while theoretical research on the principles of
structure from motion continues in its quest for opti-
mal recovery, we can also follow an alternative approach,
We can ask the following simple question: if we had »
robust structure from motion module, what would we
use it for? The answer of course lies in a taxonomy of
visual tasks involving motion, i.e. navigational tasks. A
few such generic navigational tasks are, for example, the
following:

e Delection of independently moving objects in the en-
vironment, by a moving observer. This is a nontriv-
1al task, as everything moves on an image obtained
by a moving observer, thus making it hard to dis-
tinguish independent motion. Although many gen-
eral schemes have been proposed for segmentation
of a flow field into areas corresponding to differently
moving objects, there are still problems in practi-
cal applications involving more than one indepen-
dently moving object. Other approaches of interest
are those that combine measurements of flow witls
some 3-D interpretation which can then he used for
incremental improvements to segmentation in an it-
erative manner. However, no practical robust sys-
tem for detecting independently moving objects in
general environments and based on optic flow has
been demonstrated to date.

e Passive navigation. Passive navigation is a term
used to describe the processes by which a system
can determine its motion with respect to the envi-
ronment. This is important for kinetic stabilization
which, in its simplest form, requires a system to
maintain a fixed position and attitude in space in
the presence of perturbing influences. More gener-
ally, stabilization can refer to any conditions placed
on the motion parameters; for instance, the sys-
tem might be required to translate without rotation.
The two abilities are interrelated because stabiliza-
tion is generally achieved by bringing the motion
parameters to certain specified values. The capacity
for passive navigation is prerequisite for any other
navigational ability. In order to guide the system.
some idea of the present motion and some metliod
of setting it to known values must be available. In
present robot svstems the necessary information is
often explicitly available as a result of a built-in
coordinate system. For an autonomously moving
system, however, there must be an active sensing
capacity. It is possible to obtain the required in-




formation mechanically as is done by the inertial
guidance systems in guided missiles. However, the
task can also be performed by visual means and it
1s this problem that we address here.

e Obstacle avotdance. Obstacle avoidance refers, sim-
ply, to the ability to utilize sensory information to
maneuver in an environment containing physical ob-
Jjects without striking them. This can be considered
a second-level ability. It requires some capacity for
passive navigation, but little else, and could thus
be considered the lowest level of active navigation.
This task can be performed non-visually by range
sensing methods, and 1t has been generally proposed
that the problem be solved visually with a similar
algorithm utilizing depth data from a scene recon-
structed by the structure from motion module.

o Avoidance of colliston with a moving object. A ro-
bust structure from motion module can detect the
3-D motion of a moving object, calculate its 3-D po-
sttion with the aid of a binocular system and predict
its three-dimensional trajectory. Thus, it can detect
any possibilities for collision, by reconstructing the
3-D trajectory of the moving object.

o Understanding of relative depth. Visual motion pro-
vides a very rich amount of information about the
refative depths of objects in the environment (which
object is closer). Clearly, this is one of the outputs
of the structure from motion module.

o Visual pursuif. A three dimensional visual pursuit
system consists of an eye (camera(s)), a subject,
an object and a mind. The mind uses information
from the eye in order to control the movement of
the subject so that it will collide with (intercept,
catch) the object. Under the traditional paradigm
of considering vision as a recovery problem, visual
pursuit is just another application of the structure
from motion module. In such a case, the camera
would reconstruct the three dimensional positions
and motions of the camera, the subject and the ob-
ject and then this information would be utilized by
a planning module to generate correct control of the
subject.

Given the lack of success in developing a robust structure
from motion module, it would seem reasonable to con-
sider simpler problems. There are visual problems, such
as the above, which do not require the full realization of
the structure from motion capability, yet which are both
nontrivial and possess the sort of environmental invari-
ance that would give them general utility. To consider
a few examples from biological navigation, the housefly
can maneuver visually in three dimensions in a complex
environment without striking obstacles; a number of bees
and- wasps can recognize and return to a particular lo-
cation in their environment; and the frog can extend its
tongue and catch flying insects. Human beings can also
Pgrform such tasks, but obviously they can be performed
With far less computational equipment than humans pos-
sess. We propose here to consider, in the context of navi-
gational tasks, some of the above problems, more specific
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and more restricted than the general structure from mo-
tion problem, with a view towards producing examples
of visual systems that have the potential for robustness.
This approach is termed purposive [4].

We show later that specific questions such as the ones
above can be answered without having to go through the
estimation of optic flow. The derivatives of the image in-
tensity function are enough for the task. The approach
taken in this paper calls for the solution of specific vi-
sual tasks, such as the ones above, in such a way that the
solution does not have more power than it is supposed
to have. For example, the procedure that provides rela-
tive depth is designed only for that purpose and cannot
be used to solve the passive navigation problem, or the
problem of 3-D motion estimation. Of course, if infor-
mation about 3-D motion is known, it can be effectively
utilized in the estimation of relative depth, but this is
of no concern to us here. When building a system that
can deal with visual motion problems, we can visualize
1t as consisting of many processes working in a coopera-
tive manner to solve various problems. For example, the
theories described in this paper could be used to design
a process that computes relative depth from image mea-
surements, independently of the process that computes
3-D motion. However, after a number of computational
steps, when results about relative depth and 3-D motion
become available from the two independent processes,
they can be exchanged and the constraints relating them
can be effectively utilized so that the results are as con-
sistent as possible.

2 Qualitative Methods

Most visual navigation tasks, including the ones de-
scribed above, have been considered to be subproblems
for the reconstructive school. The connection is a natural
one since most of these tasks involve shape and distance
relationships between the system and the environment
which can be expressed in terms of the quantitative id-
iom of the reconstructive school. This perception has
tended to discourage explicit research on such specific
problems by classifying them as special cases of an im-
portant general problem. Tt has also tended to obscure
the fact that many of the operations necessary to imple-
ment specific visual tasks can be expressed in qualitative
terms which are more aptly described in terms of the
recognition idiom. Consider, for example, the problem
of passive navigation. It is not necessary to know exactly
how the system is moving with respect to the environ-
ment but only whether it is rotating or translating at
all, and if so, in what direction forces must be applied
to reduce the motion. In the case of obstacle avoidance.
the most relevant information is not the exact distance
in centimeters from the observer to each point in the
environment, but whether the observer is on a collision
course with a nearby obstacle and if so, in which direc-
tion it should move to avoid the danger of a crash. The
common factor in these examples is that they do not re-
quire precise quantitative information and that in each
case, the information necessary to carry out the task can
be represented in a space having only a few degrees of
freedom.




3 Organization of the Paper

We wish to develop the mathematics that will give rise to
general solutions to the specific problems of detection of
independent motion, passive navigation, relative depth
estimation, obstacle avoidance, estimating whether an
object is on a collision course with the observer, and vi-
sual pursuit using the derivatives of the image as input,
as opposed to considering them as applications of the
structure from motion module. Section 4 is devoted to
the description of the input and Sections 5-9 describe
general solutions to the specific tasks mentioned above.
Finally, Section 10 is devoted to the presentation of some
experimental results. It should be pointed out that here
we are mostly interested in the theoretical principles be-
hind these perceptual processes and the geometry of the
normal flow. We seek solutions that have uniqueness
properties using normal flow as input, since normal flow
1s well defined, while optic flow is not. Thus, we only
present the computational theory behind each process.
For various properties of the solutions of the individual
problems, a theoretical error analysis and an extensive
implementation, see {16, 18, 22, 29]. It will become clear
that solving the abovementioned problems using normal
flow (which contains less information than optic flow) be-
comes possible only through the employment of an active
visual agent [5]. The reason is, of course, that some of
the computational burden is transferred to the activity
of the agent.

4 The Input

Our motivation is by now clear. We wish to avoid using
optic flow as the input to visual motion tasks. On the
other hand, we must utilize some description of the im-
age motion. As such a description we choose the spatial
and temporal derivatives g_iv g—;, %{— of the image inten-
sity function I(z,y,t). These quantities define the nor-
mal flow at every point, i.e. the projection of the optic
flow on the direction of the gradient (I, I,). Clearly, es-
timating the normal flow is much easier than estimating
thie actual optic flow. But how is normal flow related to
the three-dimensional motion field? Is the normal optic
flow field equal to the normal motion field, and under
what conditions? This question was first investigated by
Verri and Poggio [36]

Let I(z,y,t) denote the image intensity, and consider
the optic flow field ¥ = (u,v) and the motion field
¢ = (u,7) at a point (z,y) where the local (normalized)

~ 2

intensity gradient is @ = (I, I,)/+/I2 + I;. The normal

motion field at point (z,y) is by definition

iy = Uv-71 or
i, = e dy) (d_f %311) or
VIE+I2

- s dr d

N VT (747’ 9%> oF

- — 1 dr d

o = o (kE+ L %)
Similarly, the normal optic flow [21] is

_ 1
Uy = —VTL
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')—v = coordina sysem

—+ = directions of translanon
0 = dircctions of rotation

Figure 2: The active observer.

= — _1_dI
Thus Un = Un =T ar
From this equation it follows that if the change of in-

tensity of an image patch during its motion (Z—{) is small

enough (which is a reasonable assumption) and the lo-
cal intensity gradient has a high magnitude, then the
normal optic flow and motion fields are approximately
equal. Thus, provided that we measure normal flow in
regions of high local intensity gradients, the normal flow
measurements can safely be used for inferring 3-D struc-
ture and motion.

We are now ready to describe our solution to the vari-
ous motion related tasks. Since the input to the percep-
tual process is the normal flow, and the normal flow field
contains less information than the motion field, in order
to solve various problems we need to transfer much of the
computation to the activity of the observer [5]. A geo-
metric model of the observer is given in Figure 2. Notice
that the camera is resting on a platform (“neck™) with
six degrees of freedom (actually only one of the degrees
is used) and the camera can rotate around its » and y
axes (saccades).

5 Passive Navigation

5.1 A qualitative solution

The problem of passive navigation (kinetic stabilization)
has attracted a lot of attention in the past ten years
(13, 23, 24, 34, 31, 33] because of the generality of a po-
tential solution. The problem has heen formulated as
follows: Given a sequence of images taken by a monoc¢-
ular observer undergoing unrestricted rigid motion in a
stationary environment, to recover the 3-1) motion of
the observer. In particular, if (7, V, W) and (1, B, C)
are the translation and rotation. respectively, compris-
ing the general rigid motion of the observer. the problen
is to recover the following five numbers: the direction of
translation (%,;L ;‘T) and the rotation (4. B. ) (sce
Figure 3). The problem has thus been formulated as the
general 3-D motion estimation problem (kinetic depth
or structure from motion) and its solution wonld solve
several other problems. .
Consider a model for a monocular ohserver as in Fig-
ure 3. We assume that the observer moves forward. It
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%
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Figure 4:

should be noted that the observer is equipped with in-
ertial sensors which provide the rotation (A, B, C) of

the observer at any time. As the observer moves in

its environment, normal flow fields are computed in real
time. Since optic flow due to rotation does not depend
on depth but on image position (z, y), we know (and
can compute in real time) its value (uf
image point along with the normal flow.> That means
that we know the geometrical locus of the optic flow due
to translation (see Figure 4). Since the observer moves

, vit) at every

forward in a static scene, it is approaching anything in
the scene and the flow is expanding. From Figure 4, it is
clear that the focus of expansion (FOE) (&, &) (when
the gradient space of directions (%, %) is superimposed

with the image space) lies in the half plane defined by

line . Clearly, at every point we obtain a constraint line

which constrains the FOE to lie in a half plane. If the

FOE lies on the image plane (i.e. the direction of trans-

lation is anywhere inside the sector OABCD (Figure 5))

then the FOFE is constrained to lie in an area on the im-
age plane and thus it can be localized (see Figure 6).
When the FOE does not lie inside the image, a closed
arca cannot be found, but the votes collected by the half
Planes indicate its general direction. In this case the ob-

sery 3 :
‘Tver, with a “saccade” (a rotation of the camera), can

bring the FOE inside the image and localize it (Figure 7
explains the process).

\

ab]e” computation of normal flow at some points is unreli-
' We just don’t compute normal flow there.
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Figure 5: Consider the camera coordinate system. If the
translation vector (U7, V, W} is anywhere inside the solid
OABCD defined by the nodal point of the eve and the
boundaries of the image, then the FOE 1s somewhere on
the image.

(a) , (b)

Figure 6: (a) From a measurement @ of the normal flow
due to translation at a point (z,y) of the image, every
point of the image belonging to the half plane defined by
¢ that does not contain 4 is a candidate for the position
of the focus of expansion, and collects one vote. The
voting is done in parallel for every image measurement.
(b) If the FOE lies within the image boundaries, then
the area containing the highest number of votes is the
area containing the FOE. Using only a few measurements
can result in a large area. Using many measurements (all
possible) results in a small area (in our experiments an
area of at most three or four pixels).




Figure 7: (a) If the area containing the highest number of
votes has a piece of the image boundary as part of its bound-
ary, then the FOE is outside the image plane (b). (b) The
position of the area containing the highest number of votes
indicates the general direction in which the translation vector
lies. (c) The camera (“eye”) rotates so that the area contain-
ing the highest number of votes becomes centered. With a
rotation around the z and y axes only, the optical axis can be
positioned anywhere in space. The process stops when the
highest vote area is entirely inside the image.

5.2 The algorithm

We assume that the computation of the normal flow,
the voting and the localization of the area contain-
ing the highest number of votes can happen in real
time. In this paper we don’t get involved with real
time implementation issues as we wish to analyze the
theoretical aspects of the technique. However, 1t is
quite clear that computation of normal flow can hap-
pen in teal time (there already exist chips performing
cdge detection). According to the literature on Hough
transforms and connectionist networks (9], voting could
also happen in real time. Let S denote the area with
the highest number of votes. Let L(S) be a Boolean
function that is true when the intersection of S with
the image boundary is the null set, and false other-
wise. Then the following algorithm finds area 5. We
assume that the inertial sensors provide the rotation
and thus we know the normal flow due to translation.

1. begin {

2. find area S

3. repeat until L(5)

1. { rotate camera around z, y axes
so that the optical axis passes
through the center of S (saccade)

5. find area S

output §
}

If the camera has a wide angle lens, then image points
can represent many orientations, and only one saccade
may be necessary. But if we have a small angle lens,
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then we may have to make more than one saccade 4

5.3 Improvement of the solution

It is clear that the technique just described provides as
an answer an area on the image containing the FOE.
How large or small this area can be depends on the dis.
tribution of surface markings and thus on the measured
normal flow. If the FOE lies in a featureless area, the re-
sulting area will not be small. For some applications the
knowledge of area S might be enough to accomplish the
task. We can, however, narrow down a more accurate
solution, with S providing one constraint.

Assuming that inertial sensors provide us with the to-
tation, we can derotate the normal flow field. Thus.
assuming a translational normal flow field v, (z.y), we
have: v, = u - n, + vny, where (u,v) is the optic flow
and (ng,ny) the direction of the gradient at that point.
Since we have derotated, the optic flow is

U—zW Vg
u= v v = 7
and thus
W |5% U v
i = =2 (anetung) + T (e 4
oo U . mV _Z _ ey
v W u, W W v, uy Y

This is a linear equation in the FOE (TI;— +) and the
time to collision with every scene point.

If we consider a small image patch P with 7, the
average depth of the scene points giving rise to the patch
under consideration, then the above equation. for every
point (z;,y;) € P with depth z;, can be written as
Zl_y_}_r___giv\;:l?_ir_*_?_y_y_*_(Zi Zav)
vy, W W U Up

ng V

vy W

Wwow

The expected value of the last term in the above equation
is zero, and assuming that we can correctlv compute
(nz,ny) and v,, equations

ng U

v W

ny V Zav:ﬁfx-}-ﬂ/—y
vy, W W Un Upn

at every point (x,y) € P constitute a linear system in
the unknowns %, %,— and Zwu Solving such systems for
several patches robustly provides the FOE and a haz-
ard map (showing different time-to-collision values). The
patches need at least three normal flow measurements,

and so they can be quite small.

5.4 Analysis of the method

We have assumed that the inertial sensors will pro-
vide the observer with accurate information about ro-
tation. Although expensive accelerometers can achieve
very high accuracy, the same is not true for inexpen-
sive inertial sensors and so we are hound to have some
error. Thus we must assume that some unknown rota-
tional part still exists and contributes to the value of the

*Up to this point the algorithm is similar to [20]. However.
as will become clear later, it works even when rotation 1§
present, while in [20] the solution works only for translational
motion.




Figure 8:

normal flow. As aresult, the method for finding the FOE
(previous section) which is based on translational normal
flow information (since we have “derotated”) might be
affected by the presence of some rotational flow. In this
section, we study the effect of rotation (the error of the
inertial sensor) on the technique for finding the FOE. At
the same time we provide a technique for bounding the
FOE given a normal flow field containing both rotation
and translation.

In order to avoid artificial problems introduced by per-
spective distortions in the case of a planar retina and to
simplify the formulas without loss of generality, we em-
ploy a spherical retina. Let a sphere with radius f and
center O (Figure 8) represent the spherical retina (with
O the nodal point of the eye) and a coordinate system
OXY Z attached to it. Let

o = (X, Y, Z) be a world point

and 7= (z,y, z) be its image on the image plane.

Tw - e
:Ey R:”rw”: Tw ' Tw
In the sequel we derive expressions for optic (normal)
flow in the new configuration.

If the velocity of the world point 7, is given by

Then

b e 7t

ry, = —l—W X7,

{ is translation (t—: (U, v,w))
= (

W is rotation (& We,Wy,W:))

7 . P R-T ‘R
then7 = _%;RQ_&_

I = L (Vi 7 :ﬁ(L.FwJF;w.Fw):r,}g-
We have
LN VR AT
f R_“Rj(rw Tw)
— _t _ @xr T, -~ L -
“_E_JFT&—# —ég((—t—wxrw) Tow)
-1 _@xF 7 17 7
SRt iRl )
or
. tf T~
To= —— = X4 =(t-T 1
-
= %[—tf—{—?(t-f"):l—wX7
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Figure 9:

Thus, the translational flow is

F(Fﬂ]
J

while the rotational flow is given by

U = % l:-‘rf‘F

ﬂR:—LUXF

Without loss of generality we can set f = 1.
At this point we define two quantities that will be of
use later. They are 7 = %, which we term time to
I

collistion, and k = Lllli;TJIlR = ||&|]7, which represents the
effective ratio of rotation and translation.

The geometry of the spherical projection iz then given
in Figure 9. It has been shown [28] that a full (360°)
visual field simplifies motion analysis. However, what we
usually have is just a piece of the surface of the sphere
(due to a limited field of view). Assume then that the
image (the part that we see) is projected on the surface
patch S. Obviously, voting for the estimation of the FOE
can be performed for all points on S.

5.4.1
Consider

Principles of voting

7; = (z,y,7), apoint in 5,
fii = (ngy,ny, n;), the image gradient direction
at point 7},
U; = (uz, uy, u;), the flow at point 7;, and
4P = (7A; - ;) - 71;, the normal flow at 7;.
Then (see Figure 10) if # = (z,y,2) is a point in S, a
feature point 7; will vote for 7" being the FOFE (direction
of translation) iff @7 (7 — 7;) < 0 (see Figure 10).
If V[r] represents the number of votes collected at
point 1, then it is easy to see that

UGED IR ACAGEES)

;€S

Ti =
_‘n:

(Heaviside function)

whereU(aE) {

Let S' = {ﬂ\?’ﬁ €S, V[ > V[I:;]} be the set of points
that have acquired the maximum number of votes. There
are two cases:




K uj
"JP 7
o 1, 3 -
i [ A
’
A — ’
’l\‘s v ’
7 ' ,/
A ' ’
1 ,
v 4
s
',\\\ 'l ’1
Vs
v
o
Figure 10:

Case 1: S’ does not intersect the border of S, in which
case the FOE is in §'.

Case 2: S’ touches the border of S, in which case the
FOE could be outside S.

It should be clear that if there is no rotation, then S’
will always contain the FOE or give the direction of the
FOE—i.e. the direction towards which we need to ro-
tate. The size of S* depends on the distribution of fea-
tures.

We can investigate the performance of the voting
scheme in the presence of rotation. In particular we can
ask how large area S is when rotation is present. It has
been shown that this depends on the angle 8, between
the direction of translation and the axis of rotation as
well as on the rotation-to-translation ratio k. In partic-
ular, .. distorts area S’ and k enlarges it as it grows.
The interested reader can consult [16].

5.4.2 Correctness of voting

The normal flow (as well as the actual flow) 1s very
small in the region close to the FOE, and in the directions
close to orthogonal to the directions of the flow. Conse-
quently, even when only translation is present, in order
to avoid inaccuracies that might arise in the estimated
direction of the normal low—numerical manipulation of
very small quantities is unstable—we are going to dis-
card any normal flow whose magnitude 1s less than some
thireshold T;. Later, it will turn out that choosing this
threshold greatly facilitates the geometrical analysis of
the technique. Considering an actual flow 4 at a point
A (sce T'igure 11) we can compute the locus of gradient
directions 1 along which the normal flow (i.e. the pro-
jection of 4 on 1) is bigger than the threshold 7;. In
Figure 11 they are all directions inside angle BAC de-

fined by #y = arccos ﬁ’fﬂ for ﬂ%ﬁ < 1, or there are no
such directions for H%ﬁ > 1.

We now develop a condition that needs to be satisfied
in order for voting at a point to be correct in the presence
of rotation.

Voting will clearly be correct only if the direction of
the translational normal flow is the same as the direction
of the actual normal flow, that is when

(- @7 - @) >0 (2)

In addition, since we consider only normal flows
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Figure 11:

greater than threshold, we need
1a-a > T (3)
Inequality (2) becomes

(A -d)(A-4) = (7
(7l @)  + (- ) (7 dg) >0
()
So, if we set |7 - Gr| = Ty, then there are two possibil-
ities: either |7 - @] is below the threshold, in which case
it is of no interest to voting, or the sign of 7 - @ is the
same as the sign of 7 - ;. In other words, if we can set
the threshold equal to the maximum vahie of the normal
rotational flow, then our voting will always be correct.
But at point 7 of the sphere the rotational flow is

fl

e dnl < ][l = s = 15 ) =
= |l&]] - {171] - [sin(, 7] < 5]
Thus if we choose T; = |||, then the sign of 7 -«

{actual normal flow) is equal to the sign of i, -7 {trans-
lational normal flow) for any normal flow of magnitude
greater than T;.

5.4.3 The case of dominant rotation

Although the technique described in this paper was
derived to solve the problem of kinetic stabilization it
turns out that it has general applicability. It can be
modified to handle the case of dominant rotation with
translation.

Consider a pattern of optic flow in the case of pure
rotation. On a spherical retina the optic flow will corre-
spond to vectors tangent to the circles around the axis
of rotation &. The point at which the axis of rotation
passes through the image will be cailed the AOR. If there
is circular optic flow in the image (due to pure rotation)
the center of all the circles is the AOR. If we take an
arbitrary optic flow vector @y at the point 7; then we
can say that a point 7 is a candidate for the AOR if

(7 x )7 < 0.

This inequality expresses the fact that the feature point
and the flow vector at the point span the plane p which
cuts the sphere in two hemispheres where one contains all
possible candidate points for the AOR {and all of them
satisfy the previous inequality). Furthermore, all possi-
ble positions of the AOR lie on the great circle which
is normal (on the sphere) to the great cirele which is
the intersection of the plane p and the image sphere. In




other words if we replace g with the normal flow 4%
the inequality will still hold.
Very similar reasoning applies in the case of a flat

retina (perspective projection). Given an optic flow
(u,v) at the feature point (x;, y;) all possible candidate
points for the AOR are on the right of the line pass-
ing through (z;, y;) and parallel to (u,»). Furthermore,
they all lie on the line normal to (u,v) and originating
at (x;,%). In other words candidate points (z, y) for the
AOR satisfy the inequality

((u,v,0) x (z = z;, ¥y — v:,0))(0,0,1) < 0.

This inequality indicates that the 2 component of the
vector product of the optic flow vector and the difference
of the candidate AOR point and the feature point must
be negative. Asin the case of a spherical retina this holds
even when the optic flow (u, v) is replaced by the normal
flow (u”,v"). As was done in the case of translation,
voting can be performed. Points with maximum votes
are candidates for the AOR. If a minimum is sought
then the opposite direction will be found. If the area
is closed then the AOR is localized as before; otherwise
its general direction will be indicated by the area with
maximum votes.

An analysis (on a spherical retina) similar to the
one performed for the case of dominant translation can
be performed again. This time, however, the threshold
should be set to 7y = 7 = £ (time to collision). If the

magnitude of the normal flow is greater then T then it
must have the same sign (and direction) as rotational
normal flow.

When & and  are parallel the angular radius of the

i
The difference in the angular radii of the uncertainty
arcas around the FOE and the AOR is that the tangent is
replaced by the cotangent. When 8, > 0 the uncertainty
area around the AOR changes shape in a similar manner
as the uncertainty area around the FOE. It extends in
the direction & x ¢ with the growth of 8, and gets closer
to the AOR in the opposite direction.

uncertainty region is equal to 6, where cot 8., =

6 Active Detection of Independent
Motion

Anong the more significant papers devoted exclusively
to detecting moving objects is [32] by Thompson and
PO_ng. It recognizes the difficulty of motion detection
using only visual information in the form of optic flow,
and considers additional constraints that may have to
be applied for motion detection, e.g. knowledge about
camera motion, moving object tracking, and information
about scene depth. Though it presents a good discussion
Of_the various trade-offs involved, all techniques proposed
still depend on the computation of the optic flow.

Thp two approaches that are closest to the technique
<1<:sc.r1bed here (emphasizing qualitative techniques for
Particular situations) are [17] and [27]. In {17] Bhanu
et al. identify a fuzzy FOE (see also [14]) and propose
a rule-based qualitative analysis of the motion of scene
boints.  Mowever, this requires point correspondences
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Figure 12: (a) If the observer translates along its optical
axis, then the normal flow field has the property that it
points away from the origin (FOE) at every point. This
normal flow field is as expected and it does not signify
independent motion (although it might exist). (b) There
exist values of the normal flow that do not point away
from the FOE. They are not as expected and thus signify
independent motion.

that are difficult to obtain in general and involves con-
siderable “high-level” (and hence expensive) reasoning,
which would seem to be inappropriate for the relatively
“low-level” task of motion detection. In [27] Nelson gives
motion detection techniques based on normal flow and
pattern recognition that can be used In sitnations when
the observer motion is specific, and when the ohject mo-
tion changes rapidly in comparison with the changes in
camera motion (termed “animate vision”; see also [10}).

The basis of the technique described here lies in de-
viations from expectations. If the observer moves in a
stationary environment then he/she expects to receive a
normal flow field that obeys some properties (see Fig-
ure 12). If there exist independently moving vistble
objects in the scene then some of these properties will
not hold in parts of the normal flow image: these unex-
pected “anomalies” signify the existence of independent
motion.> However, it is possible that the normal flow
field appears as expected while there still exists indepen-
dent motion. In the sequel we will examine the problem
in more detail.

The motion field and hence the optic flow is due to
the motion of the observer (inducing a flow u8) and
the motion of independent objects in view, inducing a

flow uind, Then the normal flow at every point is: v, =
u®8 + ui" | where 48, " are the normal components
of @8 and @™ respectively.

We consider the case where the motion of the observer
is translation (if there is rotation, the observer’s inertial
sensors can provide it; then we can derotate the normal
flow field and thus consider only translation). Also, the
previous algorithm (Section 5) provides the FOE (or an
area containing it). To simplify the exposition we first
assume that the FOE is a known point but we can easily
generalize to the case where the FOE lies in an area S.

To make the image acquisition active, we assume that
the camera can be given very small translation, whose

®This principle of deviations from expectations and
anomalies is very powerful and can be used in many other
situations.
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Figure 13:

net result is a momentary shift of the FOE in the image.
We also assume that this can be done in a controlled
manner, so that the FOE can be moved to a desired
position(with a given accuracy). These small shifts are
called jitters.

The engineering basis for using the “jitter” is that the
shift in the FOE helps in motion detection (on the ba-
sis of purely geometric considerations, to be discussed),
while the fact that it causes only momentary and con-
trolled displacement about an equilibrium position elim-
inates the need for point correspondence. We assume
that the motors responsible for moving the camera have
the dynamic control capability needed for producing the
jitter. We believe that with a suitably designed camera
system this should be possible ¢. We do not concern
ourselves here with the details of the motor control in-
volved but consider instead only the effect of the result-
ing shifts of the FOE. Note that the “jitter” does not
effect the dominant motion of the observer (i.e. that of
the mobile platform). Thus its effect on the image flow
1s only “additive”. That is, the image flow pattern due
to the egomotion is modified by the addition of the flow
due to the jitter at a point. This constrains the nature
of the changes to the flow that can be brought about, as
will be explained later.

6.1 The computational theory

Consider Figure 13, which represents the normal flow at
two points A, B with O being the FOE. Clearly, if the
normal flow points towards the FOE (i.e. the FOE lies
in the half plane defined by the line normal to the flow),
then this particular point (B) is moving independently of
the sensor. If, however, the normal flow points away from
the FOE (as in A), this could be due to egomotion or
to a combination of egomotion and independent motion.
Thus further constraints need to be applied to always
be able to detect independent motion. At this juncture
additional information from the image sequence could
he used, for example, the value of u,,, but in accordance
with our goal of devising a strategy that uses only the
“sign” of wu,, we have to define some additional activity
that may make motion detection possible. It is easy

®After all, human eyes are perpetually active and can be
moved very efficiently with the help of extensive groups of
muscles. Any artificial system that purports to emulate hu-
man performance—at least in achieving navigational goals
(for example)—should have similar “active” capabilities [10].
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to see that the following conditions are necessary and
sufficient for detecting independent motion at a point
for a particular position of the FOE.

(a) @ points toward the FOE.
(b) The length of 7§ is less than the length of ind,

In general, the conditions above will not be satisfied
at every point in the image. The only “tool” that we
allow ourselves at this point is shifting of the FOE by
small “jitters” as explained earlier. The question we ask
then is, what ezploratory action (a sequence of shifts of
the FOE) will guarantee motion detection at all points of
the image. One condition that any exploratory activity
guaranteeing “completeness” will have to satisfy s cs-
tablished by the following observation: If 01,0,,.... 0,
is a sequence of new FOE locations (formed by an ex-
ploratory action), and the convex hull of the set of points
{O1...0} encloses the entire region of interest, then
complete detection of independent motion is guaranteed.
This constitutes a necessary condition for the complete-
ness of detection.

We can also observe that if the region of interest is
the entire rectangular image, and the FOFE is shifted at
least to the four corners of the image, then the necessary
condition for guaranteeing detection is satisfied. Up to
now, we were mostly concerned with condition (a). Be-
fore we establish conditions under which both conditions
(a) and (b) are satisfied, let us consider condition (b). If
it is violated, then the length of #7f is larger than the
length of @M, or ||@%8|| > [|@?]|]. Any exploratory ac-
tion (since we have no control over @) would attempt
to decrease ut8. The following two exploratory activities
attempt to satisfy condition (b).

If the point of interest is point A(z.4,y.4) then we can
either move the FOE close to A, or decrease the angle
between the line connecting the FOE to point A and
the gradient of the image at point 4. The first action
decreases the flow due to egomotion {egomotion flow at
the FOE is zero) and the second action decreases the
normal flow due to egomotion.

6.2 The algorithm

For a typical robot. task, detecting the motions of objects
that are small, distant, or slow is not very important. On
the other hand, detecting the motions of objects that are
large, close, or fast may be critical for the robot, and
any useful motion detection strategy should guarantee
the detection of such motions.”

"For example, for safe navigation a mobile robot needs
to detect any sharp changes in nearby objects that are large
enough to be important (e.g. another robot or a human that
may move across its path), while other moving objects may
not be of immediate interest if they are distant (e.g. they
will not affect the robot’s planned path) or if they are too
small (e.g. a fly). Of course this may represent only a typical
scenario; under other circumstances or for other missions all
motion may be critically important, and it would be justified
to pay the cost, which consists of increased exploratory activ-
ity (careful scanning of the scene) or a decrease in the overall
speed of the robot. An analogy from the biological world can
easily be made. When a deer or other animal senses danger it
slows down or even stops completely and looks around care-




There is obviously a trade-off involved between the ac-
tivity required and the parameters that describe the sen-
sitivity of motion detection under different conditions.
Computation of normal flow proceeds in real time. Nor-
mal flows pointing toward the FOE are classified as mov-
ing independently. Additional activity by the observer
(moving the FOE at least in the four image boundaries)
may uncover additional independently moving points.

If we consider a point A(z,y) on the image plane, then
the length of the flow @8 is ||@°8|| = % .r, where r is the
distance of A from the FOE. Assume further that the
detection paradigm 1s such that for the point of interest
A at least one position of the FOE lies within distance
d from A. That i1s r < d for point A. The leng&/h of the
corresponding egomotion flow is thus |[7®8|| < 7 -d and
consequently the normal egomotion component obeys

eg _ d
lsfll < o

For independent motion to be detected, we need both
conditions (a) and (b) to be satisfied. One way to guar-
antee that (a) will be satisfied is to move the FOE to
a new position so that A will be inside the segment de-
fined by the two FOE positions. For condition (b) to be
satisfied we need (worst case) that

|l > || @z
so that lEnd|| > %d
or d <[z &

If the above inequality is satisfied, then we are guaran-
teed to detect independent motion at point A.

In the above inequality, d basically represents the cost
involved in detecting motion using an exploratory strat-
egy that guarantees detection. Obviously the cost of the
exploration decreases (i.e. d increases) when the time
to collision with the environment is small (large depth,
small W). On the other hand, if ||@]] is the smallest reti-
nal motion (due to independent 3-D motion) that can be
detected, then

d=lil- 7

If {|@"4|] < |||, then there is no guarantee of detection.

This formalizes the earlier intuitive discussion and also
indicates a way to control the performance of the motion
detection strategy. At any stage a higher precision (lower
[i]]) can be achieved without changing the exploratory
action (parameterized by d), but by decreasing the dom-
mant speed of the robot.

When the purpose of motion detection is to serve as
an early warning system to detect independently moving
objects in the scene it is not necessary to guarantee the
detection of all moving (feature) points. The detection
of a few moving points (that satisfy some criteria, to
eliminate “false alarms”) should suffice since it can trig-
ger a more detailed analysis (perhaps over a narrower

\

fully, alert to the slightest movement (and may “jump” even
for a falling leaf), whereas normally it is less sensitive to the
Mmotions around it. It would be desirable to equip a robot
with a siinilar mechanism for motion detection that would
have a variable level of sensitivity.
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region), again depending on the task at hand. We show
how the cost of motion detection may be dramatically
reduced when the requirement is to guarantee detection
of a compact moving object of at least a minimum pro-
jected size. In particular, the cost of the exploratory
activity can be linked to the minimum (image) diann « «
of the objects of interest.

As discussed earlier, it may be reasonable to assuine
that the boundary of the image of a compact object in
the scene forms a closed contour. In particular, this im-
plies that all the points on the boundary of the object
are features, and would be successful candidates for our
motion detection paradigm provided the projected mo-
tion @™ is sufficiently large (||@"d|| > ||@]|). We define
the diameter ¢ of an arbitrary object as the diameter
of the largest circle that can be inscribed in the closed
contour that forms the boundary of the projected im-
age of the object. Now it becornes clear that any ex-
ploratory paradigm that “covers” the image so that it
guarantees the detection of all points distance € apart
will guarantee the detection of at least a few points on
an object having features. The points are guaranteed to
be detected by an appropriate sequence of FOF shifts as
discussed earlier. Moreover, because the houndaries of
objects are locally smooth, the points thus detected will
be clustered together, so that it may be possible to elim-
inate false alarms arising due to various noise sources
that result in isolated points appearing to have indepen-
dent motions. In practice, the presence of larger features
on the objects, e.g. lines separating regions, would make
the detection even easier. Thus the effort in the ex-
ploratory activity can be reduced when the objects of
interest have image diameters greater than some thresh-
old and when there need be no guarantee of detecting
objects having projected diameters below that thresh-
old. This is most appropriate when the purpose of the
robot is such that larger and nearer objects are more
interesting than smaller and farther objects, as may be
true for many typical robot tasks such as safe navigation
in a dynamic environment. However, at any stage the
precision of the detection can be increased by decreasing
the diameter and threshold using closer FOE shifts in
the exploratory action.

7 Estimating 3-D Motion

Assume an observer imaging an object moving in an un-
restricted rigid manner. The motion of the object can
be described as the sum of a rotation plus a translation.
We can choose a point through which the rotation axis
passes; this gives a unique rotation and translation de-
scribing the rigid motion (in general there are infinitely
many combinations of rotations and translations describ-
ing the same rigid motion). In many visual tasks we are
only interested in the translation of the moving object
and we need no information about how it rotates around
itself. This section describes how we can estimate the di-
rection of the object’s translation without being able to
recover the rotation using a technique based on normal
flow. Assume that the object is translating with veloc-
ity V.= (U,V,W) and rotating with angular velocity
Q = (A, B,C) around a point P = (Xy, Yy, Zo) on the




object. Point P is on the object and its exact choice will
be made clear later.

Point P is visible in the image (p = (z0,y0)) and we
attach a coordinate system onto the object at point P
with axes parallel to the observer’s coordinate system.
We express the motion of the object in this “object-
based” coordinate system. The velocity of a point @
on the object is

U X - X
V= [ v J+QX[ Y - Y,
W Z - Z

Then the normal flow v, along direction (n, ny) at point
(:z:, y) is Up = UNg + UMy

where (u,v) is the motion field. Expressing (u,v) in
terms of 3-D motion we get

W U Vv w
= (an + nyw) - f(nx:c + nyy)
—A(y — yo)(zns +yny) +
+B(z — zo){zny + yny) +
+C{(z = zo)ny — (¥ — yo)nz] +
YADA

+—2——(an — Any),
or ny U n, V A Ng ny
— — e - — = — .
t, W v, W %% U Un y
where n n
k=1 + A(U—ljo) (1:——+y—~y)
U Un,
- B(z —z0) (li + yn_y>
Vn, Un
- Clz— xo)n—y
Un
Ng
+ Cly—wo) ==
_ Z__ﬁ (Bn_f - A"_y)
V4 Un Un

Consider a small patch of the image around point p =
(ro0,y0) and let us assume that the average depth there
18 Zav. If we add the quantity k (%) - Zwu to both sides
of the above equation, we get

N ny, V Lav N, N ny + (& z Zav
—~ = -7 _— SR
MWW T e, Y W W

One can verify that the mean of the last term in the
equation above is zero (assuming that the mean of z is
ro and of y, yy).

We can thus consider several linear equations:

ny U

v, VW

ny U/ ny V Zav Ne Ny
W T w T Ty sty
vy Vb vy, W W . Un

in the neighborhood around P. Solution of the system
provides the FOE.

The reader must have realized that it was the choice
of the coordinate system in which we expressed the mo-
tion that allowed us to isolate the translational part of
the problem. Since P is the center of rotation, the rota-
tional flow at point p = (29, yy) is zero. In other words
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the above equation is exact at point (o, yo) and approx-
imate in its neighborhood. The error terms, however
have zero mean. This provides the potential for robust’
estimation. The time to collision is also estimated.

It is, however, clear that the technique for addressing
the passive navigation problem (Section 5) cannot be
used for the 3-D motion of an object estimation prob.
lem (while they are both the same problem if considered
as general recovery problems). For example, voting for
the values of normal flow produced by the motion of ap
object can provide a very large solution area.

8 Obstacle Avoidance—Relative Depth

One of the most elementary forms of navigation is ob-
stacle avoidance by a moving, compact sensor. It is a
prerequisite, however, for many more complex -abilities
since any system performing a more complicated task
must avoid obstacles in the process. Obstacle avoidance
is thus one specific problem for which a general solution
is highly desirable. In this context, a general solution
refers to a system that works effectively in a wide range
of real environments. This implies, among other things,
that the system performance does not depend upon ar-
tificial constraints on the nature of objects in the en-
vironment such as assuming planar or smoothly curved
surfaces, rigld or unmoving objects, mathematically uni-
form textures, and so forth.

The concept of “obstacleness” is a relative one. When
we move about in our environment, every object might
represent a potential obstacle, depending on its position
and our direction of motion, and depending on its size.
In addition, time plays an important role. When we
move towards a building, the building itself represents
a potential obstacle if our intent was to go beyond it.
In other words, an object represents an obstacle if the
observer 1s on a collision course with 1t, its size Is com-
parable to the observer’s size and the time to collision 1s
smaller than some value which depends on the particular
aspects of the problem under consideration.

Thus, we consider the problem of obstacle avoidance
as synonymous to the problem of computing the times
to collision to different parts of the scene, or finding rel-
ative depth at places of interest. This section is devoted
to computing time to collision and relative depth from
normal flow. The technique of the previous section will
be used. We consider the most general case, where an
object in view is moving rigidly (rotation plus transla-
tion).

8.1 Computing time to collision for a moving
object

Recalling the last equation of the previous section, which
Is exact at the position p = (xp, yo), we have

WU v\ W
Unp = 7 an + nyﬁ? - 7(:1:07“ + yO"y)

. . 7 ;.
with all terms defined as previously. If &— ‘»‘1— is already

computed, the quantity % 18 directly available.



8.2 Computing relative depth

Assume two objects A and B moving in a rigid manner,
while an active observer has the task of finding which
one is closer. The camera is active and can undergo
a short abrupt motion along its optical axis. Let us
assume that at time ¢; the camera is stationary and then
it moves with velocity W, at time to. Assuming that the
velocities of the two objects remain unchanged during
the time interval [T1, t5], we obtain (as in Section 7) for
times t; and to

za zB
=AY A ==
L W Ay s =B
ALptWadt _ 4 Z,tWgdt _ p
WatWe — 2 "Wetwe T U2

where Ay, By, Ay, By are known.
From these equations, assuming that dt is very small,

we obtain zA A1 A2(Bs — By)
ZE = B\ Ba(A; — Ay)’

and hence relative depth.

9 Visual Pursuit ®

In a general three dimensional visual pursuit system,
we find an agent, whose motion is under the control of
our system; a camera, which is used to generate useful
visual information to control the agent; and an object,
which may be moving. If we could find the three dimen-
sional positions and motion parameters [19] [25] of the
camera, the object, and the agent, it would be a simple
arithmetic problem to predict and guide the collision of
the agent with the object. However, we shall show here
that it is not necessary to recover these parameters.

When we try to solve the visual pursuit problem
through 3D recovery, we estimate much more than we
actually need in order to perform this generic visual task.
Taking a purposive viewpoint we develop a robust, qual-
itative solution to the problem that does not require cor-
respondence or full 3D recovery.

There are two general cases of the pursuit problem.
The camera can be mounted separately from the agent
and the object, or the camera can be mounted on the
agent or the object. In a situation where a human agent
pursues a flying ball, both of these problems are involved.
The “camera” is mounted on the agent (the human’s
body} which is intended to collide with the object. When
the human is sufficiently close to the ball, the “camera”,
which is mounted on the head, is independent of the
agent (the hand, possibly carrying a tool such as a bat),
and the hand is to collide with the ball. Thus the solu-
tion of both problems would provide a theoretical basis
for an integrated mobile “hunting” system, or for a base-
ball player!

From a mathematical viewpoint it is equivalent
whether the camera is mounted on the agent or the cam-
era is mounted on the object. In such systems the col-
llslpn is solely determined by the relative motion of the
object and the agent, and 1t is equivalent whether we
are controlling the motion of the entity that the camera

8y - .
This section demonstrates that depth recovery is not nec-
essary for motion coordination problems.
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i1s mounted on, or the entity that is moving separately
from the camera. However, they may have different ap-
plications. An example of the case when the camera
is mounted on the agent is an airplane that is attack-
ing a target. An example of thé case when the camera
is mounted on the object is a camera that is guiding a
plane to land near the camera.

Let us assume a Cartesian coordinate system with its
origin at the focus of the camera, with the z-axis pointing
towards the general direction of the agent and the object,
such that both the object and the agent are in the full
view of the camera.

Assume that the agent is located at (., Y%, Z)T with
a velocity of (Vi,, Vy., V},)T, and the object is located at
(Xo, Yo, Zo)T with a velocity of (Vy,, Vyo, V.o)T. Tf the
agent or the object is also rotating at the time, we can
choose the rotation axis to go through visible points on
the surface of the agent or the object, chosen such that
the rotation parameters are irrelevant in the prediction
and guidance of a collision. However, for simplicity we
assume that the motion is instantaneously translational.
In the general case the analysis remains essentially the
same, but the formulae become more complicated.

The agent and the object will collide after time ¢ pro-
vided that

y Xe—-X,  Y.-Y, Z,-Z,
Veo = Vi, Vyo - ‘/ys Vio = Vs

If the projection of the agent (i.e. a point of it) on the
image plane is (z,, ys), and the projection of the object
is (£,,Y,), assuming unit focal length and perspective
projection, we have

>0 (5)

o= o (6)
ys = Z’ (7)
X
- 2 8
r, 7 (8)
Y,
Yo = 7 (9)
% V, .
o Ve Ve 10
U.L'S ZS x Zs ( )
Vi Vs
vys = Zy’ — s 7. (11)
VIO Vzo
) - -_ o 12
Vro 7, Z Z ( )
Vyo ‘,ZO v
) = — Y, —— 13
Uyo 5 T (13)

where (vzy,vys), (Vro,vyo) is the flow produced by the
agent and the object at points (z,,y,) and (r,, ¥,), re-
spectively. Combining (6-9) with (5), we obtain the fol-
lowing relation for the prediction of collision:

IL’SZ, - xoZo

= 14
! Vro - VJ:S ( )
3Z - oZo -
y_,.’__g__ (15)
Vo — Vs

Z,— 27
- 2 0 16
Vzo - "y:s ( )




> 0 (17)

We call (14-17) the Visual Constraints of Collision.
The visual pursuit problem is solved if we can guide the
system to satisfy these constraints. Using the processes
of Sections 7 and 8 we can estimate the locomotive in-
trinsics (i.e. the direction of translation and the time of
collision). In what follows, we solve the visual pursuit
problem in the case when the camera is mounted on the
object, using only the signs of the three locomotive in-
trinsics, and then we present a solution in the case when
the camera is mounted separately to supervise the agent,
using the locomotive intrinsics, relative depth, and the
direction of motion.

9.1 Camera mounted on the object

The problem 1is equivalent whether the camera is
mounted on the agent or on the object. For simplic-
ity here we assume that the camera is mounted on the
object and that we can control the velocity of the agent.
We choose a Cartesian coordinate system with its origin
at the focus of the camera, and with its z-axis pointing
towards the general direction of the agent, such that the
agent is in the full view of the camera.

As the camera is mounted on the object, the co-
ordinates of the object on the image plane are zero,
as is its velocity. We have (X,,Y,,Z,)7 = 0 and
(\QO,V;,O,VN)T = 0, as well as (z,,¥,) = 0 and
(120, vyo) = 0. In the following, when we write Z, and
Zs, we always mean E(Z,) and E(Z,) (i.e. the aver-
age depth around the neighborhood), unless otherwise
specified. Thus (14-17) can be simplified to

YA
e (18)

Ys L
= == 9
- (19)

Zs

= v (20)
> 0 (21)
trom (18) and (20) we have z, = V,,/V,,. From

(19) and (20) we have y, = V,,/V.,. Thus if we draw
a line from the origin through the focus of expansion
(Vs / Vs, Vye/Vis), or the first two locomotive intrinsics,
on the image plane, we have a set of all the points that.
will collide with the origin. In order to collide the agent
with the object, we should control the motion of the
agent so that the focus of expansion lies inside the im-
age of the agent. The third locomotive intrinsic Z,/V,,
is the negative of the time to collision (see (21)). Note
that since ¢ > 0, the third locomotive intrinsic should be
negative for the collision to occur. In this case, V,, < 0,
that is the agent should be coming closer to the camera.

Since we have an active camera, for simplicity we can
rotate the camera such that the image of the agent will
be in the center. The agent will collide with the object
if we can keep the focus of expansion at the origin and
keep an expanding pattern of normal flows.

If the focus of expansion is not at the origin, we can
devise a control strategy to guide the focus of expan-
sion towards the origin of the image plane according to
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the signs of the three locomotive intrinsics, indicating
whether the velocity of the agent needs to be Increased
or decreased at any time instant.

L4 If Z/‘/Z < 0 and sz/t/zs = ‘/y.s/‘/zs = 0, a COHiSiOn

will occur.
o If Z/V, = 0, a collision has occurred;

o If Z/V,, > 0, the agent is going away. Decrease Vi,
and
— If Vz4/V,s = 0, do not change V,;
— If Voo /Vys > 0, decrease Vg;
— If Vo /V,s < 0, increase Vi,
- If Vys/V.s = 0, do not change V,;
— If Vys/V2s > 0, decrease Vi,;
- IfV,,/V.s <0, increase Vy,;
e If Z/V,, < 0, the agent is coming closer. Do not
change V,; and
- If Vs /V,s = 0, do not change V,;
- If Voo /V.s > 0, increase Vg
If Voo /Ves < 0, decrease Vi
If Vys/V:s = 0, do not change Vi,;
If Vyo/V:s > 0, increase Vy,;
= If Vo /V.s <0, decrease V,.

This constitutes a qualitative paradigm for colliding
the agent with the object when the camera is mounted on
the object. We only use the sign of the three locomotive
intrinsics. We can predict the collision, and if a collision
will not occur we qualitatively control the velocity of

the agent towards a state such that the agent will collide
with the object.

9.2 Camera mounted separately

When the camera is mounted separately, the camera may
be stationary or in motion relative to the world coordi-
nate system. But for simplicity, we choose a coordinate
system with its origin at the focus of the camera and its
z-axis pointing towards the general direction of the agent
and the object such that both the agent and the object
are in full view of the camera. In this coordinate sys-
tem, the camera is stationary, and velocity is measured
relative to the camera.

9.2.1

The special case when the object is coming towards
the camera may need to be handled differently. If we
can correctly identify cases when the object 1s coming
towards the camera, we may want to move the camera
away from the pathway of the object and then proceed as
usual, or when the object is small and is not destructive,
we may just put the agent in front of the camera to
receive the object.

We can detect whether the object is coming towards
the camera using the analvsis in the previous section.
When the object is coming towards the camera, the focus
of expansion of the object lies inside the image of the
object and the third locomotive intrinsic is negative.

If we send the agent to the front of the camera, we have
the case studied in the last section. 1t can be determined

Object coming towards the camera



from the time to collision of the agent and the object
whether the agent is moving fast enough to intercept
the object.

In the following general analysis, we assume that the
object is not coming towards the camera, but moving in
any other direction. ’

9.2.2 General case of camera mounted
separately

From (14-15), we obtain
((.’L‘, yo _ysv:co)"(rsvys _ysVz:s))Zs_
((-'Eovyo - yovro) - (Iovy.s - yovx.s))Zo =0

Note that if (z,,y,), (Ves/Ves, Vys/Vzs), (20, ¥0), and
(Vzo/Vio, Vyo/Vzo) are a group of parallel vectors, (22)
will be satisfied. Thus in the general case of a separately
mounted camera, we first obtain the direction of motion
of the object; then we rotate the z-axis of the camera
such that 1t will be in the direction of the object. Then
we can move the agent in the direction parallel to the
direction of motion of the object. This is a group of
sufficient conditions for the collision of the agent and
the object when we have good control of the original
position of the agent.

To satisfy (16-17), we need to find the time to collision
t and make it equal to (16). Combining (10-13) with
(14-17), we obtain

(22)

r Za
/ ~ ZL'J_J:OZ, (23)
(l’:o‘*‘l'olzl‘f)%‘:_ Urs+1:sLZL:')
. ys_yo%: (24)
(Uyo’i"yo%"f)%_(vys'*"ya%)
1— Za
Zq ¢
T Vo Ze _ Vi (25)
Z,  Z, Z,
> 0 (26)

If we can find a point on the agent and a point on the
object which have the same normal direction (ng,ny),
from (23-24) we find the time to collision as follows:

t =
neTy 40y, — (ReTotnyyo) 32 (27)
(Vnot(PeTotnyyo) F2) 32— (Vnet(neZetnyye) F2)
Similar equations can be obtained if we can find two

normal directions from the agent and the object which
are perpendicular. Combining with (25), we have
(%: - 1)(17710% - vns)

st _ V'zo (28)
Zy 7, ne(xs — o) + ny(Ys — ¥o)

Thus, control of the agent is achieved by varying
.Vr,/VyJ in order to satisfy (22) and V,, in order to sat-
i5fy (26) and (28). According to these equations, we can
devise a system for qualitative control of the motion of
the. agent, so that the agent will collide with the object.
This scheme can be accomplished through six sequential
PhF}Ses as follows. The first three phases are devised to
satisfy (22). The next two phases are devised to satisfy

(26) and (28). The last phase tests to see if the agent
will co]

agent.
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lide with the object without further control of the

. Rotating the camera. Through the point (z,,y,)

draw a line in the image plane with direction

(Vzo/Vzo, Vyo/Vzo)-

e If the line goes through the origin, proceed to
the next phase;

e If the origin is on the lower left portion of the
image plane, rotate the camera up and to the
right;

e [f the origin is on the upper right portion of the
image plane, rotate the camera downward and
to the left;

. Position the agent.

e If the line drawn above goes through the agent,
proceed to the next phase;

o If the agent is on the lower left portion of the
image plane, move the agent up and to the
right;

o If the agent is on the upper right portion of the
image plane, move the agent downward and to
the left;

. Move the agent parallel to the image plane. Change

the velocity of the agent, such that Vi, /V,s = 2, /y..
o If the agent is on the left of the object, V;; and
Vys should be increased;
o If the agent is on the right of the object, V;,
and Vy, should be decreased;
e If the agent and the object collide on the image
plane, do not change V., and V.

. Positive time to collision. Proceed to the next phase

after:
o If 7,/Z, = 1, do not change V., at present;
e If Z,/Z, > 1, adjust V,, such that

Ves > Zo ‘/zo.
Zy Z, Zo'
o If Z,/Z, < 1, adjust V,, such that
VZ3 ZO VZO
<22y
7, Zy Z,

. Move the agent perpendicular to the image plane.

e If (28) is satisfied, proceed to the next phase.
o IfV,,/Z, is larger in (28), decrease V.,;
o If V., /Z, is smaller in (28), increase V.,;

. Predicting collision. The agent will collide with the

object if the following conditions are met, or other-
wise repeat from phase 1:

Vio Vs

Lo — Vio o 2 — Vs
T Ve T — Vi
Yoo Vi3 s,

Z VZB ZO " (s




In summary, in the case when the camera is mounted
on the the object or the agent, we have devised a qual-
itative strategy to predict and guide the collision of the
agent and the object. We only used the signs of the three
locomotive intrinsics (FOE and time to contact) to qual-
itatively control the velocity of the agent such that the
visual constraints of collision will be satisfied.

In the case when the camera is mounted separately to
supervise the agent to collide with the object, we have
devised a set of sufficient conditions to satisfy the visual
constraints of collision. This set of sufficient conditions
can be reached by a qualitative scheme of control without
any exact 3D depth or velocity information of the agent
and the object.

QOur method can also be used to control the collision
even when the object is rotating in addition to having
instantaneous translational motion.

10 Recapitulation and Experiments

We have presented solutions to several problems related
to visual motion using normal flow as the input. Al-
though we have not solved the general structure from
motion (sfm) problem using normal flow, we have pre-
sented solutions to various important problems that are
simple applications of the sfm module. The robustness of
the proposed algorithms relies heavily on the robustness
of the computation of normal flow, i.e. spatiotemporal
derivatives of the image intensity function. But even
without using any elaborate schemes for computing the
normial flow (after all, some of the techniques presented
only require its sign) we have performed several experi-
ments. \We report here a few of them:

(a) Egomotion estimation

We have performed several experiments with both syn-
thetic and real image sequences in order to demonstrate
the stability of our method. From experiments on real
images it was found that in the case of pure transla-
tion or pure rotation the method computes the focus of
expansion or the axis of rotation very robustly. In the
case of general motion it was found from experiments
on synthetic data that the behavior of the method is as
predicted by our theoretical analysis (see [16]).

Figure 14 shows one of the images from a dense se-
quence collected in our laboratory using an Merlin Amer-
ican Robot arm that translated while acquiring images
with the camera it carried (a Sony miniature TV cam-
era). Figure 15 shows the last frame in the sequence
and Figure 16 shows the first frame with the solution
area (where the FOE lies), which agrees with the ground
truth. Figures 17 and 18 show the first and last frames in
a sequence of images collected through a rotation of the
sensor and provided by the University of Massachusetts
for the Workshop. Figure 19 shows the first frame of the
sequence with the solution area for the AOR.

(b) Detection of independent motion

Figure 20 shows the experimental setting for testing
the algorithm for motion detection from a translating,
active camera. The CCD camera is mounted on a slide
to simulate pure translation, and can be given small ro-
tations around a revolving platform to simulate the ex-
ploratory activity. The model board simulates an out-
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Figure 16:

Figure 17:



Figure 18:

Figure 19:

door scene. The image sequence is captured by Data
Translation QuickCapture on a Macintosh Ilci. Figures
21(a)-21(d) show the results of the experiment: (a) is a
sequence of closely sampled images taken from a moving
and active camera; (b) shows the output of the motion
detection algorithm without any exploratory activity; (c)
shows the output after four shifts of the FOE as part of
a simple exploratory activity; and (d) shows the motion
detection output (dark) overlaid on the image (light).

(¢) Relative Depth

We have performed several experiments on both syn-
thetic and real data in order to test the feasibility and
stability of our approach. We report here some experi-
ments on real data. The setup for our experimental work
with real images consists of a CCD camera mounted on a
slide so that it can purely translate along its optical axis.
The camera is viewing a scene consisting of a toy (“Mrs.
Potatchead”) and a toy robot arm (Radio Shack). The
arm (carrying the “vision” of Mrs. Potatohead) is ini-
tially placed closer to the camera. Figures 22 and 23 are
taken with the camera stationary and the arm moving
toward Mrs. Potatohead.  Figure 24 shows the nor-
mal flow produced from the motion of the arm, using
the straightforward gradient technique [19]. Figure 25 is
taken after the camera has moved forward and Figure 26
sl)ofvs the normal flow produced.

Using the algorithms in Sections 5 and 7, we estimated
the relative depth of the toy and the arm. We computed
the quantity Z/V,, where Z is the depth of a point and V,
1s the speed of the camera, and considered the median
value for the arm and the toy. It was found that this
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Figure 20:

Figure 21: (a) and (b)




Figure 24:

Figure 25:
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Figure 23:
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value was 7.553544 for the arm and 9.118339 for the toy,
which agrees with the ground truth.

We performed the same experiment with the arm at
the same distance as the toy. We found that the value of
the median relative depth (Z/V,) was 10.230856 for the
arm and 10.145772 for the toy, which again agrees with
the ground truth.

11 Purposive, Behavioral, Active Vision

Vision has been studied, for the most part, as a general
recovery problem, i.e. its goal has been to reconstruct an
accurate representation of the visible world and its prop-
erties, for example, to recover boundaries, shape from
texture, shading, motion, etc. Following this point of
view, we consider the “brain”—or any intelligent sys-
tem possessing visilon—as consisting of vision and every-
thing else (planning, reasoning, memory, etc.). In other
words, we view the role of vision as that of creating a
central database which stores accurate 3-D information
about the scene. Then other cognitive processes (such
as planning, for example) can access this database, ex-
tract whatever information they need and modify it to
suit their needs. This central database is created by vi-
sual modules—such as the sfm module—that have been
integrated in some way [3].

But if the analysis in this paper is valid, it demon-
strates that we can solve many interesting problems,
without creating a very accurate or full representation
ol the scene and its properties. Clearly, when a problem
is simpler and more restricted, it is easier to solve. How-
ever, these simpler problems (in our case, simpier than
the general sfm problem)—namely, passive navigation,
motion detection, 3-D translation estimation, obstacle
avoidance, relative depth, visual interception—are quite
important and not very specific. They are generic in the
sense that they have environmental invariance. In other
words, developing such visual motion capabilities consti-
tutes theoretical research. The fact that we may be able
to robustly solve many less general problems—which,
of course, cannot replace the reconstructive modules-
demonstrates that we are capable of building machines
that robustly achieve various behaviors. By putting such
behaviors together, can we achieve “intelligent systems”?
If this is possible, it provides an alternative way to study
pereeption. A few publications over the past few years
G, 8, L1, 12, 15, 26, 35] have supported such an ap-
proach, which has acquired various names such as purpo-
stve, task-basced, behavioral, active, animate, utilitarian,
ete. I this section we attempt to describe the paradigm
in more detail and we point out its drawbacks as well as
its potential usefulness.

11.1  An attempt to formalize

With the realization that behavioral vision has as its
goal the development of robust, non-primitive behaviors
displayed by a robotic agent, we should be able to for-
malize the concept of behavior and the concept of an
agent. At the same time we need to be able to provide a
ormal way of generating new behaviors and a calculus
of behaviors or purposes.
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If there 1s a similarity of this approach to old ideas of
goal-based vision—where systems using knowledge at all
levels, including domain-specific knowledge, were built
and it turned out that many corners had to he cut and
many oversimplified assumptions had to be made—it ex-
ists only in spirit. An intelligent agent (observer) is a
system that has a setl of goals or purposes, at all times.
To pursue these goals, il has to exhibit a set of behav-
tors. Not all agents have the same purposes: some are
more sophisticated than others and they display different
behaviors.

It would be hard to give a general definition for an
agent (or such a definition would be so general that it
wouldn’t be useful at an engineering level). We are sur-
rounded by agents. They are basically entities that in-
teract with the world around them and act appropriately
in each situation. As they act and sense, they display
behaviors and fulfill purposes.

Coming back to the basic question of formalizing be-
haviors, we realize that there is a very rich set of them.
Some are primitive, others more sophisticated and oth-
ers quite complex. In such situations, it is nice to be
able to start from primitives, that is a set of bhehaviors
from which all others can be constructed. But it is not
at all clear which behaviors are the primitive ones.

To avoid a potential philosophical snare, we sidestep
the question and we ask: how can we formalize behav-
tors, and then generate new and more complex ones from
old ones and from learning?

A behavior i1s a sequence of perceptual events and ac-
tions whose task is to accomplish a goal. Visual input is
received 1n a continuous manner and various processes
(such as those described here and others) work together
in order to recognize perceptual events and take appro-
priate action (an action could be a motion (navigation,
manipulation), or a change of an internal state of the
agent displaying the behavior). The problem is then to
control such a system. It must be emphasized that the
processes performing the visual analysis in order to rec-
ognize the perceptual events perform ounly partial recov-
ery of the world, i.e. to accomplish some behaviors we
do not need an accurate and full scene representation.

In abstract terms, a behavior of an agent is a sys-
tem broadly known as discrete event process [7]. How-
ever, despite numerous results in the literature, there is
at the present time apparently no unifving theory for
the control of discrete event processes. Nor 1s it very
clear what such a theory should accomplish. Numerous
approaches to the modeling of discrete processes have
appeared in the literature (Boolean models, Petri nets,
formal languages, temporal logic, port automata, and
flow networks).

An interesting model proposed recently [37] treats the
controlled set of processes as the generator of a for-
mal language (an automaton taking various actions) and
studies how the recognizer of a specific (target) lan-
guage (another machine recognizing perceptual events)
may be employed as a controller, incorporating the de-
sired closed-loop system behavior, and it is shown how to
construct such a controller under some assumptions. [t
is also shown how, given two such controllable systems




(let’s say behaviors By and Bj), to create the shuffle
operation Bi||B2, so that we can create more complex
behaviors from existing ones. However, the main conclu-
sion of such control theoretic work may be paraphrased
by saying that “supervisors must be modeled on the task
to be accomplished”. In other words, there does not ap-
pear to be a general universal way to accomplish behav-
iors (control them) or make new ones from old ones; it
appears that the problem depends on what has to be
accomplished.

11.2 Object recognition

Although it is not hard to see how to study navigation in
this paradigm of behavioral vision, it might seem hard
to apply this point of view to recognizing objects. What
would 1t mean to have behaviors that recognize objects?

This difficulty can be easily avoided by attempting to
solve an easler problem, namely that of recognizing the
function of an object® (there may exist many functions
for a single object) that is required to accomplish the
behavior under consideration (an agent always executes
a behavior). So, recognition can be considered in the
context of an agent performing it in an environment,
while executing a behavior.

An object can fulfill a function, suit a purpose. If the
ageut recognizes this, it has recognized the object. In
fact, it has not recognized an object in the sense that it
can name 1t as a hurnan would, but 1t has recognized it
“well enough” to act on it (for example, use it, avoid it,
cat it, mate with 1t, etc.). But in most cases, deducing
an object’s purpose with regard to the current behavior
can be done by testing the existence of some perceptual
properties of the image of the object. Usually, to find out
if an object can fulfill a function we need to perform vari-
ous parfial recovery tasks. Thus, without reconstructing
thie world fully, we can recognize many objects to the de-
gree that we can utilize them (examples: big and moving
closer {danger), man-made, graspable, movable, of cer-
tain size, with a concavity (cup), etc.).

Although such an approach does not address all as-
pects of object recognition, it seems to be well suited to
the design of robots.

12 Conclusions

We have preseuted the foundations behind a set of pro-
cesses that interpret visual motion in a purposive man-
ner. We showed that an active observer can solve a series
of important problems through the use of the deriva-
tives of the image intensity function. In particular, we
presented direct solutions for the problems of kinetic sta-
bilization (passive navigation), detection of independent
motion, obstacle avoidance, relative depth and 3-D mo-
tion (translation) computation and visual interception.
Altlhiough the abovementioned problems are applications
of the general structure from motion problem, we ad-
dressed them as independent problems in their own right
and produced solutions that depend on data which can
be measured.

“l.e. not recognizing the object but finding out enough
information about it to utilize it.
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The possibility that important behaviors can be real-
ized by the cooperation of processes that recognize per-
ceptual events without having to create a full represer,.
tation of the outside world suggests that vision can be
studied as a part of a system that has purposes whjch,
translate into behaviors. This point of view opens severa)
interesting research areas, all related to the development
of intelligent visual behaviors. We have pointed out var.
1ous possible formalizations for this approach, as well ag
the associated problems.

Research in this paradigm will becorne more interdis-
ciplinary with time, since the basic premise is that vision
should not be studied in isolation but as a part of an in-
telligent system. New questions about control arise, and
the integration of vision with planning, manipulation,
memory and learning will provide interesting research
avenues.

Whether this behavioral vision paradigm is the nat-
ural evolution of the field is still questionable. This
will certainly depend on the results that are generated.
Behavioral vision addresses a normative question (what
should be), i.e. how should we best design robots for a
set of tasks. Reconstructive vision addresses a theoreti-
cal question (what could be), i.e. what range of possible
mechanisms could exist in vision systems. The empirical
question (what is), i.e. how actual biological svstems are
designed, is addressed by other communities( psychol-
ogy, neuroanatomy, etc.), while the normative and the-
orctical questions are studied by computer vision. And
although these three questions do not necessarily have
the same answers, they are closely related.
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