
ROR: Rejection of Outliers by Rotations

Amit Adam, Student Member, IEEE,
Ehud Rivlin, Member, IEEE, and
Ilan Shimshoni, Member, IEEE

AbstractÐWe address the problem of rejecting false matches of points between

two perspective views. The two views are taken from two arbitrary, unknown

positions and orientations. Even the best algorithms for image matching make

some mistakes and output some false matches. We present an algorithm for

identification of the false matches between the views. The algorithm exploits the

possibility of rotating one of the images to achieve some common behavior of the

correct matches. Those matches that deviate from this common behavior turn out

to be false matches. Our algorithm does not, in any way, use the image

characteristics of the matched features. In particular, it avoids problems that cause

the false matches in the first place. The algorithm works even in cases where the

percentage of false matches is as high as 85 percent. The algorithm may be run as

a postprocessing step on output from any point matching algorithm. Use of the

algorithm may significantly improve the ratio of correct matches to incorrect

matches. For robust estimation algorithms which are later employed, this is a very

desirable quality since it reduces significantly their computational cost. We present

the algorithm, identify the conditions under which it works, and present results of

testing it on both synthetic and real images. The code for the algorithm is available

through the World Wide Web.

Index TermsÐCorrespondence problem, feature matching, false matches,

outliers, outlier rejection, robust estimation.

æ

1 INTRODUCTION

CORRESPONDENCE of points in two images is a fundamental

problem in computer vision and has been the subject of intensive

research for over two decades (see, for example, chapter 16 in [7]).

This problem is sufficiently hard that even recent matching

algorithms (for some examples, see [10], [14], [9], [16]) may still

make errors. There are two types of errors. The first is to miss a

matchÐi.e., not to match the images of a feature which appears in

both views. As long as this does not happen prohibitively too

often, this type of error is not alarming. The second type of error in

which a false match is foundÐi.e., the pixels which image two

different scene points are matchedÐis more severe. For instance,

in motion estimation, even one false match may affect the results of

non-robust algorithms (for example, the least-squares-based

algorithms [8]) as to make them useless. For this reason, in recent

years, work has been devoted to estimation based on robust

methods. In these works, even if there are false matches in the

input, a meaningful result may still be obtained. One of the

examples for these kind of algorithms is the work by Zhang et al.

[16]. In this work, the fundamental matrix is robustly estimated by

minimizing the Least Median of Squares (LMedS) criterion. The

search for the proper matrix is carried out by randomly choosing

subsets of eight matching pairs. Other examples of robust

algorithms may be found in [15], [13], [12].
In this paper, we address the issue of reducing the number of

false matches. The percentage of correct matches out of the total
number of matches directly affects the computational cost of many
robust algorithms. In many of these algorithms, subsets of the
matching pairs are chosen and computations are carried out on
these subsets (for example, RANSAC in [10], choice of subsets of
eight matches in [16]). In order to receive the correct answer, some
of the subsets chosen should contain only correct matches. The
higher the percentage of correct matches, the lower the number of
subsets one has to choose in order to ensure (with a certain
probability) obtaining some ªpureº subsets.

We present an algorithm which accepts as input a list of

matches of which many may be false (even up to 70-85 percent)

and outputs a subset of these matches in which the number of false

matches is much lower. In other words, the algorithm throws away

matches in a such a way that false matches are rejected with a high

probability while correct matches are rejected with a low

probability. We do this by actively rotating one of the views, an

action which ºshakesº away the outliers.

Our algorithm is different from other robust approaches in

several ways. First, our algorithm does not carry out computations

using the outliers (false matches) and then rejects them based on

the results obtained (as is done in the RANSAC paradigm,

for example). In other words, our algorithm is application-

independent. Second, our algorithm's complexity does not increase

with the percentage of outliers in the input. In approaches where

subsets of features are sampled, the number of samples required

increases dramatically with the percentage of outliers. In our

algorithm, the complexity does not depend on the percentage of

outliers. Last, our algorithm may be applied even in cases where

the percentage of outliers is as high as 85 percent. This percentage

may be above the breakpoint of many other robust algorithms.

We emphasize that we do not assume knowledge of the relative

rotation and translation between the two input views. The only fact we

use in our algorithm is that the point matches which are correct are

perspective images of the same point in space.

The ideal use for our algorithm is as a postprocessing stage after

any automatic matching algorithm. This postprocessing of the list

of matches is likely to throw away a large portion of the wrong

matches. This allows the user to apply a wider range of robust

techniques to further process the matches (for the specific

application in mind) and at a lower computational cost. As will

be demonstrated, we have used ROR on input from a very naive

SSD matcher and have raised the percentage of correct matches

from 20-30 percent to around 70-80 percent.

2 THE ROR ALGORITHM

2.1 Problem Definition and Terminology

Given two perspective views of a static scene, we associate a world

coordinate system with each view in the standard fashion: the

origin is at the center of projection and the z axis is the viewing

direction. The two coordinate systems are related by a rotation R

and a translation ~t as usual: P̂ � R�P ÿ~t�. We assume the focal

length f of the camera is known.
The correspondence algorithm outputs a set of corresponding

points on the two screens

S � fli � �pi; p̂i� � �xi; yi; x̂i; ŷi�ji � 1; . . . ; ng:
We will sometimes refer to the pairs li as segments and think of the

line segments between the point pi and the point p̂i (as if the two

points were on the same screen). Some of the matches in the scene

78 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 23, NO. 1, JANUARY 2001

. A. Adam is with the Department of Mathematics, TechnionÐIsrael
Institute of Technology, Haifa 32000 Israel.
E-mail: amita@cs.technion.ac.il.

. E. Rivlin is with the Department of Computer Science, TechnionÐIsrael
Institute of Technology, Haifa 32000 Israel.
E-mail: ehudr@cs.technion.ac.il.

. I. Shimshoni is with the Department of Industrial Engineering and
Management, TechnionÐIsrael Institute of Technology, Haifa 32000
Israel. E-mail: ilans@ie.technion.ac.il.

Manuscript received 10 Nov. 1999; revised 20 July 2000; accepted 27 Sept.
2000.
Recommended for acceptance by P. Meer.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number 110916.

0162-8828/01/$10.00 ß 2001 IEEE

are false or outliersÐi.e., pi and p̂i are not the images of the same

point in space.

We will shortly use rotations as a method to generate new

scenes from the given scene S. By this we mean the following: It is

well-known that given a certain image, one may reproduce the

effect of changing the 3D orientation of the camera. Let us denote

the two views by view A and view B. From these two views, we

compute the segments si � p̂i ÿ pi. Let us now rotate view B by ~R

to obtain the view ~B with the points ~pi. We may now compute the

segments ~si � ~pi ÿ pi. Thus, we obtained a rotated scene ~S � f~sig
from the given scene S � fsig.

2.2 The ROR Algorithm

The basic idea for rejecting false matches is simple and may be

demonstrated by looking at Figs. 1a and 1b. In these figures, we

plotted the segments fsig by plotting the points fpig and fp̂ig on

the same screen and joining them by a line. Fig. 1a depicts point

matches between two images A and B which are related by a

certain translation and rotation of the camera. Fig. 1b depicts

matches between image A and image ~B which was obtained from

image B by rotation. Clearly, one can see that in this case, the

segments are all pointing at approximately the same direction. A

segment that would point in a different direction is likely to be a

false match or an outlier.

We exploit the following idea: Given two images A and B with

point correspondences, one may rotate the image B to obtain an

image ~B such that the point correspondences between A and ~B

will create segments which point at the same direction. Incorrect

matches between the two images will lead to segments which do

not point at that direction. Thus, we may identify the incorrect

matches by identifying deviation of the segment direction from

the most frequent direction.

We now present the ROR (rejection of outliers by rotations)

algorithm. We will explain the different steps of the algorithm in

the following section.
ROR Algorithm

1. Start with correspondence segments li � �pi; p̂i� between
image A and image B.

2. Perform K random rotations of image B. For the kth
rotation compute the set of segments Sk � fski � �pi; p̂ki �g.
For each set Sk compute the following:

a. Find the mode of the distribution of segment direc-
tions. Denote it by mk.

b. Let dki denote the angle between the direction the
segment ski points at, and the frequent direction mk.
Save this distance from the mode.

c. Find the minimal window around the mode mk which
contains some percentage q of the directions of
segments in the setSk. Denote the window width bywk.

3. Order the K rotations according to increasing widths wk.
Define as ªgoodº rotations only the first G rotations in that
order. Let G denote the indices of the ªgoodº rotations.

4. For each feature i, compute the average distance of the
segment containing the feature from the mode:

�di � 1

G

X
k"G

dki

5. Compute the mode T of the average distances �di.
6. Increase T by a small constant � and use it as a threshold

on the average distances �di. The correct matches are those
segments si such that �di � T � � for some fixed �.

The computation of the mode of the distribution of segment
directions is done by using the Mean Shift Mode Estimator [6], [3]
and a technique described in [4] for avoiding local maxima.

3 GEOMETRIC INTERPRETATION OF THE ROR
ALGORITHM

3.1 3D Interpretation of the Directions of Segments

In this section, we will explain the reasoning behind the algorithm

which was presented in the previous section. We first relate the

directions that the line segments point at to some characteristic of

3D feature vectors. Then, we reason by using the 3D vectors.

3.1.1 Working with 3D Feature Vectors

Let si � p̂i ÿ pi denote the ith segment. By direct computation,

si �
f X̂
Ẑ
ÿ f X

Z

f Ŷ
Ẑ
ÿ f Y

Z

 !
� f

ZẐ

ZX̂ ÿXẐ
ZŶ ÿ Y Ẑ

� �
: �1�

Let ~�i denote the 3D vector

~�i � Pi � P̂i � �ÿ�ZŶ ÿ Y Ẑ�; ZX̂ ÿXẐ;XŶ ÿ Y X̂�t: �2�
We can see that the projection of ~�i on the xy plane is orthogonal to
the vector si. From this, we immediately obtain:

Claim: Suppose we are given two corresponding pairs �pi; p̂i�
and �pj; p̂j�. These pairs give rise to the segments si � pi ÿ p̂i and
sj � pj ÿ p̂j. Then, the angle between the vectors si; sj is equal to
the angle between the xy projections of ~�i and ~�j.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 23, NO. 1, JANUARY 2001 79

Fig. 1. The points pi and p̂i joined by lines. (a) Original images A and B. (b) Image A and rotated image ~B.

Let C denote the projection of the set f~�ig on the xy plane. C is a

ªcloudº of points. We may now derive the following conclusion

(see Fig. 2).
Conclusion: The maximal angle between any two segments si

and sj representing correct matches, is equal to the angle at which

the set C is viewed from the origin.
We now want to express the points in the set C as the sum of

certain expressions. Assume the rotation R acts on a vector by

rotating it around the axis k̂ at an angle �. Then, by Rodriguez's

formula [5], we have

R~v � cos �~v� sin ��k̂�~v� � �1ÿ cos ���k̂ �~v�k̂: �3�
We apply this formula to ~v � P ÿ t and after some manipulations

obtain

~� � P � P̂ � P �R�P ÿ t� �4�

� ÿ cos ��P � t� � sin ��P � �P ÿ t��k̂ÿ sin ��P � k̂��P ÿ t� � �5�

�1ÿ cos ���k̂ � �P ÿ t���P � k̂�: �6�
Let us denote the four terms in (6) by

g1 � ÿ cos ��P � t�
g2 � sin ��P � �P ÿ t��k̂
g3 � ÿ sin ��P � k̂��P ÿ t�
g4 � �1ÿ cos ���k̂ � �P ÿ t���P � k̂�:

�7�

Each vector ~�i is the sum of these four vectors. The x; y projection

of ~�i is the ith point in the set C. This point is the sum of the

x; y projections of each of the four terms.

3.1.2 Small Angular Width of C

We will now reason why, in some cases, the set C is likely to

occupy a small angular region when viewed from the origin. By

the conclusion above, in these cases, all the inlier segments point in

the same direction. This characteristic behavior of the inliers allows

us to differentiate them with respect to the outliers.
The set C is the xy projection of the 3D points �i as in (6). The

vectors k̂ and t are fixed and the point P changes (P � Pi). Let us

now suppose that k̂ is a vector in the xy planeÐk̂ � �kx; ky; 0�t. Let

us also assume the points Pi have a dominant Z component. This is

a reasonable assumption for cameras which are not with an

exceptionally wide field of view. Fig. 3 shows the xy projections of

the four terms g1; . . . ; g4 defined in (7), for a typical set f�ig.
The long straight line (marked by pluses) is the projection of g2 :

all the points are in the direction of the xy components of k̂Ði.e.,

�kx; ky�. The scalars multiplying k̂ are sin ��Pi � �Pi ÿ t��. As the

points Pi vary, these scalars are of order O�Z2� and, thus, have

large variability, leading to a long line.
Let us now look at the first term:

g1 � ÿ cos ��P � t� � ÿ cos �
tzY ÿ tyZ
ÿtzX � txZ
tyX ÿ txY

0@ 1A: �8�

If we assume Z � X;Y and that tz does not dominate tx; ty, we

obtain

�g1�1;2 � ÿ cos �Z
ÿty
tx

� �
: �9�

Indeed, we may see in the figure that the term g1 gave rise to a

second, shorter line (marked by circles) which is in the fixed

direction �ÿty; tx�t. The scalars multiplying that vector are of order

O�Z� and, hence, the variability is not as large as the in the

previous term, resulting in a shorter line.

The projections of the third term are shown by xs and are seen

to be near the origin, i.e., small in magnitude. This is a result of the

assumption that k̂ has no Z component and that the dominant

component in the Pis is in the Z direction: the scalar P � k̂ is a factor

reducing the magnitude of g3.
The fourth term g4 is

g4 � �1ÿ cos ���k̂ � �P ÿ t���P � k̂� �10�

� �1ÿ cos ���k̂ � �P ÿ t��
kzY ÿ kyZ
ÿkzX � kxZ
kyX ÿ kxY

0@ 1A �11�

and under the assumption kz � 0 its projection on the xy plane is

�g4�1;2 � O�XZ � Y Z�
ÿky
kx

� �
: �12�

Hence, it is a line orthogonal to the projection of g2, but much

shorter. This line may be seen in the figure (marked by dots).
The set C (marked by asterisks) is the vector sum of the four

terms described above and, hence, is dominated by the sum of the

80 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 23, NO. 1, JANUARY 2001

Fig. 2. The angular width of the set C as viewed from the origin.

Fig. 3. The four components of �i and their sum. � is the projection of g1 term. � is
the projection of g2 term. � is the projection of g3 term. . is the projection of g4 term.
� is the point in C (sum of the four terms).

two terms g1; g2 (see Fig. 3). As we saw, the term g2 is the dominant

term and gives rise to a straight line passing through the origin. The

direction of this line depends only on the rotation and is equal to

�kx; ky�t. The term g1 gives rise to a set that is approximately a

straight line, too, although this line is shorter. We saw that the

direction of this line depends only on the translation and is �ÿty; tx�t.
If the directions of these two lines happen to be equal, the set C will

be virtually contained in a line passing through the origin and,

hence, will have a nearly zero angular width. Note that the

translation is fixed and we have no control over it. However, we

may apply different rotations and, thus, have some control of the

direction of the longer line resulting from the term g2 (see Fig. 3).

In addition to specifying the optimal rotation axis, we should

also specify the rotation angle around this axis. The choice of an

optimal angle is affected by a large number of factors, including

the translation vector and the depths of the points. However, it

turns out that the range of suitable rotation angles is not very small

and, hence, even random search for it will yield reasonable results.

3.2 Applying Different Rotations

We have seen that some unknown rotation should be applied to the

second image in order to achieve the desired common behavior of the

correct matches. This unknown rotation is found by applying K

random rotations ~Rk to the second image. Some of these rotations (by

pure chance) will give a rotation with the desired characteristics. This

is Step 2 in the algorithm. The main question is how to identify these

ªgoodº rotations. The approach we use is to identify these rotations

by the characteristic which makes these rotations ªgood.º We know

that in the rotations which are suitable for our purpose, the inliers all

point at the same direction. Thus, we expect a peak in the histogram

of directions. The sharper the peak, the better we expect the rotation

to be. In Step 2a of the algorithm, we find the peak of the histogram of

directions. Step 2c then checks how sharp the peak is. In Step 3 of the

algorithm, we choose those rotations in which the peak was the

sharpest.

Having identified the proper rotations, we now compute for

each segment �pi; p̂i� its average distance from the peak of the

histogram. To be more precise, each segment �pi; p̂i� gives rise to a

rotated segment �pi; ~pki � for the kth rotation. We measure in Step 2b

how far the direction of this segment is from the frequent direction

mk. Then in Step 4, we average these measurements, but we take

into account only the measurements from the ªgoodº rotations. For

inliers, we expect all these measurements to be small, and for

outliers, we expect these measurements to be more uniformly

distributed with large values.

Based on the averages of these measurements, we want to

decide which are the inliers by thresholding. The averages of

inliers are all small and close to each other. On the other hand, the

averages of outliers are larger and more widely dispersed. Thus,

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 23, NO. 1, JANUARY 2001 81

Fig. 4. An example showing that the ªgoodº rotations are not de-rotations. (a) Segments from original (pure translation) pair of images. (b) Segments after applying one of

the ªgoodº rotations to image B. (c) Angular ranges of segments from the original and rotated pairs.

Fig. 5. Cumulative Distribution Functions (CDFs) of incorrect rejection (miss) and correct rejection (hit) probability distributions. (a) Basic scenario. (b) Scenario with large

depths. Notice improvement of performance. (c) Scenario with close 3D points. The algorithm fails.

when we look at the distribution of the values these averages

obtain, we see a peak corresponding to the inlier average value. We

choose the threshold according to this peak value as done in Steps 5

and 6 of the algorithm.

3.3 Additional Remarks

At this point, we would like to make some additional remarks.
As is evident, our algorithm relies on common behavior of the

inliers which creates peaks in certain distributions. In order for this
to happen, we need some ªcritical massº of inliers in the original
population. Fortunately, it turns out that this ªcritical massº does
not have to be very high: even a low percentage of inliers such as
15-30 percent is sufficient, as will be shown in the next section.

Note that the complexity of our algorithm is determined by the
complexity of finding the proper rotation. This complexity is constant
with respect to the percentage of outliers. This is a fundamental
difference with respect to other approaches such as RANSAC,
where the complexity rises significantly with the percentage of
outliers. In cases where the percentage of outliers is high, RANSAC
may not be applicable because of its complexity, while our
approach may still work.

Last, we would like to emphasize that the rotation we are
searching for is not the unknown rotation between the two original
views. In other words, we are not performing rotation compensa-
tion. Fig. 4 shows an example in which the two views are related
by pure translation. In this case, no rotation compensation is
required at all. Still, by applying the ªgoodº rotation found by the
algorithm, we obtain approximately parallel segments.

4 RESULTS

The ROR algorithm was tested both on synthetic and on real

images. We briefly describe the results obtained on synthetic

images and then present results with real images. A more complete

description of the simulation results may be found in [2].

Each synthetic image pair contained 30-45 inliers and

100-140 outliers, thus reaching approximately 70-80 percent

contamination of outliers. For each scenario defined below, we

generated 100 image pairs on which the algorithm was tested.

The basic scenario was the one in which the 3D points had

x; y coordinates in the range �ÿ50; 50� and the depth was in the

range �150; 300� (the focal length is 1). This corresponds to a half

field of view of approximately 18 degrees, which is reasonable. The

rotation between the two screens was obtained by choosing

randomly the roll, pitch, and yaw angles to be between 0 and

20 degrees. The z component of the translation was in the range

�15; 45� and was multiplied by -1 with probability 0.5. The

x; y components of the translation vector were computed from

the z component and the focus of expansion which was chosen

randomly in the square �ÿ0:3; 0:3� � �ÿ0:3; 0:3�.
We will consider two probability distributions for each

scenario. The first is the probability that an inlier will be

mistakenly classified as an outlier. The second is the probability

that an outlier will indeed be identified and rejected. Fig. 5a shows

the Cumulative Distribution Function(CDF) of these two distribu-

tions, as obtained from 100 pairs from the basic scenario. One may

82 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 23, NO. 1, JANUARY 2001

Fig. 6. Some of the real image pairs on which ROR was tested.

TABLE 1
ROR Performance on Real Images

see that the probability that no more than 30 percent of the inliers

will be mistakenly rejected is around 70 percent. On the other

hand, the probability that less than 90 percent of the outliers will be

rejected is only around 15 percent. From the graphs, we see that in

this scenario we have a very high probability that nearly all the

outliers will be rejected and a good chance that 50 percent or more

of the inliers will not be rejected.

In Section 3, we have discussed the need to assume that the

3D points have a dominant Z component. Figs. 5b and 5c show the

results we obtained from two scenarios which differ in this respect.

Fig. 5b shows the results for a scenario in which we changed the

depths of the points to be in the range �300; 450� instead of the

range �150; 300� as in the basic scenario. The results are clearly

better than in the basic scenario. Fig. 5c shows that when the depth

is in the range �50; 100� then the algorithm does not work well.
In other scenarios, we have checked the effects of variability in

depths, direction of translation, and magnitude of translation.

Because of space limitations, we refer the reader to [2] for a

description of these results.

The results we have just described were obtained by running

the algorithm with the following values for its parameters (see

Section 2.2). The number of random rotations was K � 1000. From

them, we have chosen the best G � 50 rotations. The width of the

window in the MSM algorithm is �7:5 deg . The threshold T was

increased by � � 1 deg . The percentage q which is used in Step 2c

was 33 percent.
Real Images: Our algorithm was tested on several image pairs

taken in our lab. At first, we ran a very simple matching algorithm.

The algorithm extracts features using the SUSAN [11] algorithm,

and then tries to match these features using a simple SSD cue. The

results of this simple matching algorithm are not of high quality:

only 15-30 percent of its matches are correct. Fig. 6 shows some of

the image pairs on which the algorithm was tested.

Table 1 summarizes the results of running ROR on the real

images and the matches found by the SSD matcher. Most of the

outliers were rejected and the rejection rate of the inliers was

almost always low. Notice that the outlier rejection rate was

usually above 80 percent, while the inlier rejection rate was usually

less than 20 percent. Fig. 7 summarizes these results by showing

the empirical cumulative distribution functions (CDFs) of the

rejection rates for outliers and for inliers. As may be seen, the

probability distributions describing the rejection rates for outliers

and for inliers, are clearly different. For example, we may see that

the chance that more than 80 percent of the outliers will be rejected

is roughly 80 percent, while the chance that less than 20 percent of

the inliers will be rejected is over 80 percent.

We remark that the algorithm currently uses random search. In

order to reduce the variability in results, we employed 10 runs (of

1,000 rotations each), and took the majority vote for each match. On

a SUN Sparc this took 5 to 10 seconds (depending on the number of

features).

As an example of the inner workings of the algorithm, we

present data from one of the image pairs. We have ordered the

238 features such that the 54 correct matches will be at the

beginning, and the false matches will follow. Fig. 8a shows the

average distance of each segment direction (dki in the earlier

notation) from the mode direction, where the average is taken over

all K � 1; 000 rotations. It may be seen that there is a difference

between the inlier segments and the outliers: compare the graph

up to x � 54 and beyond. After we choose the G � 50 ªgoodº

rotations, this difference becomes much clearer. This may be seen

in Fig. 8b which is a plot of the average distance �di, where the

average is taken only on good rotations.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 23, NO. 1, JANUARY 2001 83

Fig. 7. CDFs for the rejection rate of outliers and inliers. These are empirical

distributions based on the results obtained on 11 real image pairs.

Fig. 8. Average distance of each segment's direction from the mode. (a) Average over all rotations. (b) Average over ªgoodº rotations only.

5 CONCLUSIONS

In this work, we have presented a novel method for rejecting false
matches between two images. We have exploited the fact that we
may perform (by software) a rotation of the camera and by doing
that we have built many image pairs with matching points. We
have shown that in some of these image pairs the correct matching
points create line segments that point in approximately the same
direction. By using the Mean Shift Mode algorithm, we were able
to find those segments that do not point in the mode direction and
classify them as false matches.

Our algorithm rejects mostly outliers and (unfortunately) a

small number of correct matches. We have shown that under

rather wide conditions, the algorithm succeeds and rejects a very

significant portion of the outliers, while keeping most of the inliers.

Since the algorithm does not manage to reject 100 percent of the

outliers, robust estimation algorithms may still be needed for the

application in mind.
We therefore suggest using the ROR algorithm as a prepro-

cessor before employing further robust estimators:

. Use of the ROR may lower the percentage of outliers from
an unacceptable percentage to a percentage below the
breakpoint of the robust estimator to be used later on.
Thus, by using ROR, we may clear the way for use of
robust estimators in situations in which these estimators
were previously useless.

. By reducing the percentage of outliers, ROR may sig-
nificantly reduce the time required by robust algorithms,
which are based on random sampling.

We have made the code for the algorithm available for research
purposes [1].

Our current work addresses the following issues: The first is the

rotation of the first image in addition to the second image. This

idea is expected to further widen the scope of scenarios under

which the algorithm is useful. We are also interested in under-

standing which are those outliers that are not rejected and what

characterizes the inliers that do get rejected. Another interesting

line of work is to use information gathered by our algorithm to

gain some knowledge about the camera motion between the two

original views. For example, should the mode direction approx-

imate the perpendicular direction to the focus of expansion?

ACKNOWLEDGMENTS

The authors would like to thank Moti Gornshtein for the
C implementation of the algorithm. A provisional application for
a patent on these algorithms has been filed in the United States.

REFERENCES

[1] A. Adam, ªROR Implementation,º available through http://
www.cs.technion.ac.il/~amita/ 2000.

[2] A. Adam, ªVision-Based Navigation Packages,º PhD thesis, TechnionÐ
Israel Inst. of Technology, 2000.

[3] Y. Cheng, ªMean Shift, Mode Seeking, and Clustering,º IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 17, no. 8, pp. 790-799, Aug. 1995.

[4] D. Comaniciu and P. Meer, ªDistribution Free Decomposition of Multi-
variate Data,º Pattern Analysis and Applications, vol. 2, pp. 22-30, 1999.

[5] J.J. Craig, Introduction to Robotics, second ed. Addison-Wesley, 1989.
[6] K. Fukunaga and L.D. Hostetler, ªThe Estimation of the Gradient of a

Density Function, with Applications in Pattern Recognition,º IEEE Trans.
Information Theory, vol. 21, pp. 32-40, 1975.

[7] R. Haralick and L. Shapiro, Computer and Robot Vision. Addison-Wesley,
1992.

[8] R.I. Hartley, ªIn Defense of the 8 Point Algorithm,º Proc. IEEE Int'l Conf.
Computer Vision (ICCV), pp. 1064-1070, 1995.

[9] M.S. Lew and T.S. Huang, ªOptimal Multiscale Matching,º Proc. IEEE Conf.
Computer Vision and Pattern Recognition (CVPR), pp. 88-93, 1999.

[10] P. Pritchett and A. Zisserman, ªWide Baseline Stereo Matching,º Proc. IEEE
Int'l Conf. Computer Vision (ICCV), pp. 755-760, 1998.

[11] S. Smith and M. Brady, ªSusanÐA New Approach to Low Level Image
Processing,º Int'l J. Computer Vision, vol. 23, no. 1, pp. 45-78, 1997.

[12] P. Torr and A. Zisserman, ªRobust Computation and Paramterization of
Multiple View Relations,º Proc. IEEE Int'l Conf. Computer Vision (ICCV),
pp. 727-732, 1998.

[13] P.H.S. Torr and D.W. Murray, ªThe Development and Comparison of
Robust Methods for Estimating the Fundamental Matrix,º Int'l J. Computer
Vision, vol. 24, no. 3, pp. 271-300, 1997.

[14] G.Q. Wei and G. Hirzinger, ªIntensity and Feature-Based Stereo Matching
by Disparity Parameterization,º Proc. IEEE Int'l Conf. Computer Vision
(ICCV), pp. 1035-1040, 1998.

[15] Z. Zhang, ªDetrmining the Epipolar Geometry and Its Uncertainty: A
Review,º Int'l J. Computer Vision, vol. 27, no. 2, pp. 161-195, 1998.

[16] Z. Zhang, R. Deriche, O. Faugeras, and Q.T. Luong, ªA Robust Technique
for Matching Two Uncalibrated Images through the Recovery of the
Unknown Epipolar Geometry,º Artificial Intelligence, vol. 78, pp. 87-119,
1995.

84 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 23, NO. 1, JANUARY 2001

