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Fusion of Fixation and Odometry
for Vehicle Navigation

Amit Adam, Student Member, IEEE, Ehud Rivlin, Member, IEEE, and Héctor Rotstein, Member, IEEE

Abstract—This paper deals with the problem of determining the
position and orientation of an autonomous guided vehicle (AGYV)
by fusing odometry with the information provided by a vision
system. The main idea is to exploit the ability of pointing a camera
in different directions, to fixate on a point of the environment
while the AGYV is moving. By fixating on a landmark, one can
improve the navigation accuracy even if the scene coordinates
of the landmark are unknown. This is a major improvement
over previous methods which assume that the coordinates of the
landmark are known, since any point of the observed scene can
be selected as a Jandmark, and not just pre-measured points. This
work argues that fixation is basically a simpler procedure than
previously mentioned methods. The simplification comes from the
fact that only one point needs to be tracked as opposed to multiple
points in other methods. This disposes of the need to be able
to identify which of the landmarks is currently being tracked,
through a matching algorithm or by other means. We support
our findings with both experimental and simulation results.

Index Terms-— Data fusion, fixation, landmark-based naviga-
tion. -

N

1. INTRODUCTION

VE"O be able to operate appropriately, an autonomous guided
vehicle (AGV) must keep a sufficiently accurate track
of its location and orientation with respect to some given
coordinate system. Depending on the function of the AGV,
this navigation task may be either relatively simple and easy to
achieve. or quite complicated and critical. For instance. 1f the
vehicle is operated in a controlled environment. with frequent
interaction with an operator, then simple sensory information
like odometry, can probably be uscd o achieve a satisfactory
precision. On the other hand, if the vehicle is to operate au-
tonomously for relatively long periods of time in a potentially
unfricndly environment. then more sophisticated  navigation
solutions must be found. The different measurements available
for navigation may be classified into two groups:
1y Dead-Reckoning. In this group, the AGV starts from a
given known location, and then integrates the reading
of its instruments in order to compute its local position,
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Examples of dead-reckoning systems are odometry and
inertial navigation.

2) External Measurements. In this group, the AGV gets
external information from the environment via additional
sensors. The external information may be of a global
nature, or it may be local information. The information
may also be either complete or partial. As an example of
complete global information, the AGV may be equipped
with a GPS receiver and a map of the environment. If
the AGV gets relative information of its location and
orientation with respect to some reference points with
unknown localization, then the external information is
partial and local. An example of this type is given by
the information received from a CCD.

Being self-contained, dead-reckoning has intrinsic advantages
in terms of implementation simplicity, robustness, and large
bandwidth. However, since dead-reckoning is based on di-
rect instrument integration, inevitable inaccuracies, under-
modeling, instrument errors and noise result in locatjion and
orientation errors which grow unboundedly with time. Ap-
plication of dead-reckoning is then Limited by the accuracy
of the instruments and the duration of the autonomous navi-
gation period. On the other hand, systems relying on external
information are usually less straightforward to implement, less
reliable, and provide information at a slower rate. However,
although the instantaneous errors may be relatively large,
these errors are bounded and do not grow with time. Con-
sequently they can be used when only coarse but bounded
location/orientation is required. It follows from this discussion
that dead-reckoning and external measurement navigation have
basically complementary features. It is then natural to atiempt
to combine or fuse the two strategies in order to obtain
improved results.

Traditionally, AGV’s have used their built-in odometry 1o
compute their location and orientation using dead-reckoning.
More recently, cameras mounted on a computer controlled
variable pan-tilt platform have become “off-the-shelf” and can
be mounted on an AGV for performing a variety of tasks,
not necessarily connected with navigation. Motivated by this
fact, this paper deals with the problem of determining the
position of an AGV by fusing information from odometry with
information coming {rom the vision system. In particular, the
possibility of pointing the camera in different directions, is
used to fixate on a point of the environment while the AGV is
moving. As discussed below, the measurements of the angle
and angular rate to the fixated point can then be used as
external information.

1083-4427/99%10.00 © 1999 IEEE
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Several authors have fused external information with odom-
etry in order to obtain a better position estimate of an AGV.
For instance, range sensor readings and a map of the operating
environment were fused in {8] with odometry. By detecting
laser reflections from reflectors placed in known locations, the
angles from the vehicle to certain known points were computed
and fused with odometry in [13] and [17]. In [7] odometry
was fused with information coming from the detection of the
position of a known landmark in an image taken of the vicinity
of the landmark. In [5] the additional information was angle
readings to three known landmarks.

The topic of self motion estimation from a sequence of
images has a distinguished history in computer vision [1].
More specifically, the utilization of fixation for recovering
egomotion information can be found in [10], [11], and [15].
Of particular interest for the present research is [14], where
the relationship between the translation and rotation vectors
describing the egomotion is discussed. The use of fixation for
motion estimation is considered in [10], [[1], and [15], where
it 1 shown that fixation enhances the ability to recover the
focus of expansion (FOE). As will be seen, measurement of
the FOE is part of the fusion process discussed below.

References [6] and [12] discuss fixation and navigation. In
[6]. fixation is used as a control cue to guide a vehicle along
a predetermined path. An initial range estimate to the fixation
point is assumed. Localization through fixation is discussed
in [12]. However range measurements which may be obtained
using stereo are needed in their formulation.

In the quite different aeronautical and marine setup, fixation
has also been considered under the name “bearings-only”
measurements. In that context. the observer is assumed to
be ecither located at a fixed position or moving with accurate
information on seff-motion. The observer then takes bearing,
ie.. line-of-sight angles, measurements to a target and uses
these measurements to track the location of the target. This
sort of “dual” problem was considered in [2] and [4] and
references therein. The basic approach in these works is to
assume a simple stochastic model for the movements of the
target, like constant target velocity plus normal white noise
process, and use the measurements to recover the unknown
motion parameters.

The purpose of this paper is to present a new way of
fusing odometry with the measurements generated by a camera
mounted on an AGV. The camera is provided with two degrees
of mechantcal freedom. allowing to keep the image of a certain
tixed point at the same place on the screen over a period of
time. Fixation is a relatively simple computational task which
can be performed in real-time while the AGV is moving.
Information coming from the camera system is then fused with
odometry readings to obtain a more accurate estimate of the
position and orientation of the vehicle.

The paper is divided into two parts. In the first part, it
1s shown that by fixating on a landmark one can improve
the navigation accuracy even if the scene coordinates of the
landmark are unknown. This is a major improvement over
previous methods which assume that the coordinates of the
landmark are known. In particular. using this approach any
point of the observed scene can be selected as the tandmark,

and not just pre-measured points. In the second part of the
paper, we assume we have an initial estimate of the coordinateg
of the fixation point. Then very simple measurements are
needed from the vision system—only pan and tilt angles from
the vehicle to the point. We formulate a fusion process of
these measurements with odometry information, and describe
experimental validation of this procedure. We also suggest an
“emergency procedure” for obtaining absolute position once
the vehicle gets lost. Thus, the second part shows that fixation
is a simpler procedure than previously mentioned methods.
The simplification comes from the fact that only one point
needs to be tracked as opposed to multiple points in other
methods [S5], [7]. This disposes of the need to be able to
identify which of the landmarks is currently being tracked,
through a matching algorithm or by other means.

The framework used to fuse the fixation and odometry
information is the Extended Kalman Filter (EKF) framework
[31.

The next section describes the system being proposed and
the constraints fixation imposes. Section III describes the EKF
formulation of the ideas formulated in Section II. Section IV
describes a formulation which uses simpler measurements
from the vision system. Section V presents simulation and
experimental results. Conclusions are presented in the last
section.

II. SYSTEM DESCRIPTION AND FIXATION CONSTRAINTS

The system used for studying the fusion of odometry with
fixation consists of an autonomous vehicle provided with a
video camera. The AGV is equipped with an encoder on
each one of the two motorized wheels, generating odometry
measurements. The camera is mounted on a pan and tilt
platform on top of the AGV. The camera fixates on a certain
point as the vehicle moves, and is instrumented so that at all
times the pan and tilt angles with respect to the vehicle can be
measured. Three coordinate systems are relevant in this setup:
a “scene” system which is assumed to be static, a “body”
system attached to the AGV, and an “image” system attached
to the camera. These coordinate systems are detailed next.

Consider first the scene coordinate system (&5, 7,, 2s) such
that the z, axis is the vertical one, and the movement of the
vehicle is constrained to lie in the Z,. 7, plane. The position
and orientation of the vehicle can then be specified by its
coordinates (., i) in the scene, and its heading angle 0. The
two-dimensional (2-D) vector (x,.y,.) specifies the position
of the midpoint between the two motorized wheels, while
#. is the angle between the :, axis and the direction per-
pendicular to the baseline between the two wheels, measured
in anti-clockwise direction. The body coordinate system can
consequently be obtained from the scene coordinate system by
a translation followed by a rotation around Z,.

The attitude of the camera with respect to the body is
specified (Fig. 1) by means of the pan and tilt angles #. and
o respectively. When looking straight ahead in the direction
of motion #, = 0; when looking to the left, #, — w/2. The
condition ¢ > 0 means that the camera is looking upwards.
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Fig. 1. Scene and camera coordinates.

Thus the configuration of the camera and vehicle is specified
by (a0, 0,0, ).

Consider next a perspective projection mode! for the camera,
with focal length equal to 1, and assume that the center
of projection is located exactly above the midpoini between
the encoded wheels, at a fixed height h. Define a camera
coordinate system (7..%.,2.) as follows: Z. is the camera
viewing direction—i.c. the optical axis, §. is the vertical
direction on the image screen, and 7. is chosen to form a right
handed system. The origin of the camera coordinate system is
at the point specified by (. y, . 2)" in scene coordinates. With
these definitions the transformation between scene coordinates
and camera coordinates is given by

T Te Ly
Yo | =RILws 1 — | v h
z, Zg h
where
—sind cos b 0
R= | —sinpcost —sinpsing cosgp (2)
cos wcos cossiné sing

and 8 = #,. 4 4.

Assume now the camecra and vehicle at time ¢ are in the
configuration

N = (e (8), (1) 0:(1), 0 (1), (1))

As the AGV moves in the environment, the camera coor-
dinates of a fixed scene point change with time. Let 7 =
(:(t), y(1). 2(1))" be the camera coordinates of the scene point
{w.7.2)" when the camera is in configuration y(t), as given
by (1). Assuming that the movement is smooth enough to
allow differentiation, the derivative of j7 can be computed.
The computation (which is omitted for reasons of space) leads
to the following expression for the derivative:

(1) (1) (1) #(1)
i | = =k (gt |+ [ = conptn) | % { w0
z(1) 0 —8(t) sin p(t) 2(1)

3)

where /(1) is the matrix R in (2) cvaluated with 6,.(2), 8.(t)
and ¢(f). Thus we have expressed p as

p=—1— whxp 4)

motion of the camera is a rotation and a translation. The
rotation is around the vector

—(t)
= | B(t) cos p(1) (5
P2 4+ 62 \ 4(1) sin (1)

- 1
k=

at an angular rate of w = 1/¢? + 62, while the translation is
with a velocity vector

I,.(1) —&.sinf + G cosl
t=RH| 9.(t) | = | ~d,sinwcosh — 4,.sin@sin b
. 0 G €OS 0 COS B + 7, cos @sind
(6)
The vectors . 1 are both given in the camera coordinate system
at time £. As described i in the next two subsections, the fact that
the fixated camera motion depends on the motion of the AGV
can be exploited to generate useful navigation information.

A. Geometric Constraint

Suppose that the camera is fixated on a point with coordi-
nates 179 = (0,0,2)" in the camera coordinate system. If the
motion normal to the line-of-sight is nonzero, then the vectors
wk and 7 describing the motion satisfy the constraint [14]

wh = wh’,j?,o + f X I{O (7
“ HP ofl
where wg, 15 some (unknown) constant. More explicitly
=400
0(t) cos (1)
G(t) sin (1)
0 1 — . sin § + 1, cos 0
= 0 + = | singp(—@,. cosf — g sinf) | x |0
Why “\ cos (i cos + 1, sinf) 1
(3)
After performing the cross product one obtains
o —ell)
(1) cos p(1)
B(1) sin (1)
0 1 —dr sin @ cos 0 — g, sin @ sin f
= 0 + - drsinf — g, cosd NC))
WR, - 0

In order to eliminate the unknown distance z to the fixation
point, one can now divide (on both sides of the equation) the
y coordinate by the x coordinate and obrtain

8 cos %) 2. 9n f — 9. cos
S s — : (10)
- —, 8in @ cos @ — . sin @ sin @
or after some further mampulation
gl (j:’F? g)’lw 97'7 97'7 9(17 @7 ()C'/ W)
= p{z, sinl — g, cos §)
— @ sin @ cos p(d, cos + g, sind) = 0. (an

From standard kinematics (see, for example, [91) we know that  This equation means that given camera motion measurements

from this representation we can infer that the instantaneous

;

(6, 0, ()c, ) and assuming the camera was fixated, the motion
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parameters of the vehicle (.., 4., 8,.) are constrained by (11).
As shown later, the angle 6§, actually does not appear in this
equation.

B. Computer Vision Constraint

The constraint (11) is a geometric constraint arising from the
fact that the line of sight passes through a fixed point in space
as the vehicle moves. A related condition can be obtained
via computer vision considerations. Suppose that two or three
images taken by the camera are available during the motion.
It is standard [11], [15] that, under certain assumptions, a
point (. V") called the “focus of expansion™ (FOE) can be
computed from the collection of images. The translation vector
describing the motion of the camera is related to the FOE via
the equation

L=ALV | (12)

[n other words, the direction of the translation can be obtained
from the FOE. By using (6) we get

I —dsinf + g, cos b
F= ANV =
1 ‘I-',.('U»\‘#;“)SH + '['/,v(',L)Sk,C'SIIII f

—asingcosf — g, siipsin 4
¥ Y

(13)

Again we may now divide the y coordinate by the .« coordinate
on both sides of the equation to get

L: _ :jin/;“:(.i‘.,. cos + 1, sinf) (14)
I3 —(, sinf — g, cos )

or
g2ty by B B UV ) =0, (15)

Although the coordinates (7. V') of the FOE are not available
directly, they can be estimated from the sequence of images
and consequently one can assume that the camera plus FOE
estimator act as a “soft sensor,” providing the FOE coordinates
as pseudo-measurements. Therefore, for the case under con-
sideration, the camera measurements are (.., U. V') which
are to be compared with (H(._g.f%,.g‘) when the geometric
constraint is being used.

At this point it 1s worth emphasizing that there is a sig-
nificant difference between the geometric constraint and the
computer viston constraint. The geometric constraint states
that the quantities ... g, describing the platform movement
and the quantities #. o, . & describing the camera, are
related due to camera fixation. From this relationship one
can attempt to update the platform movement estimate, based
on the camera movement. The computer vision constraint
states the same thing in principle; but in this case physical or
geometrical considerations enter only indirectly. Indeed, the
computer vision constraint is an expression of the fact that
the soft computer vision sensor can also estimate the platform
transtation (through the estimation of the camera translation),
and this estimate can be used in conjunction with the odometry
{ Iy ) oestimate to get a better overall estimate of platform
movement. Thus the computer vision constraint is intuitively

expected to be less useful than the geometrical constraint.
Indeed, in the experiments we did we saw that a nearly ideal
soft sensor is required for the computer vision formulation to
work well.

HI. EKF FORMULATION

The geometrical and computer vision constraints described
above can now be fused with odometry measurements, in order
to reduce navigation errors. The fusion is performed using the
extended Kalman filter described next.

The first step is to express the quantities (4., %,,6,) as
functions of the odometry readings. Let »y. > be the radii
of the right and left wheels respectively, and let Agy, Apo
be the outputs of the right and left encoders. By simple
kinematic arguments [16], when the right and left wheels tra-
verse distances Q) = 1Ay and (02 = rp Ay, respectively, .
the vehicle moves a distance As = () + (Q2)/2 and its
orientation changes by A, = (0 — 02}/ B. Here B denotes
the baseline distance between the two wheels. The change in
scene coordinates is correspondingly

sin(Af,/2)

Az = As A(J;ﬁi ('()H(H,» + AH,/_))
sin(Ad,/2) ,

Ay = Ny a6 . 9

Ay = As ENE sin{d,. + AF,./2).

If the encoder sampling rate is fast enough, then the angle
f,. can be assumed to be constant between samples. The term
sin(Af,/2)/(A6,/2) can then be ignored so that

B (As/AL) cos(d, 4+ NG, /2) (16)
i~ (As/A) sin(8, + A0, /2) (17
b, = A8, /AL (18)

Note that (16)-(i8) give (.it,..y,..ﬁ',.) as functions of the
odometry readings (.2 and the current orientation f,.
Further examination of the constraints (11), (15) show that
these equations involve the scatar products of the following
three vectors
D ¥ = (&,,9,.) which is the heading direction of the
vehicle;
2) [ = {cos(f,. +0.).sin(#, + #.)) which is a vector along
the line of sight to the fixation point;
3) 1= {—sin{f. +6,), cos(f, + 6.)) which is the normal
to [.
Cancelling the angle ¢, from these scalar products, and
plugging (16)—(18) into (11) and (15) yields

gilQ- Qs 0. 0 0. 8) = Digsing — hsing cosgeosa)

(19)
(1. Qo b 0. UV = DI sin g cosa — Vsina) (20
where
) R
= all Q). Oy = 0 (0 — ()
a = al{fl. (J. g._,), . 2]3
o= Bl 01O = QL — o
B N BV
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In the face of the equations above, consider the state vector

formed by the two odometry variables

: 0, )
The vector of camera measurements is
8(' 9(
. % - @
=117 or ¢=
g, U
E v

depending on the vision system and constraint being used.
In order to describe the EKF algorithm, suppose that in the
last time interval the vector 2 of current estimate of the odom-
etry values has been computed, with an associated covariance
matrix . Let (,:) 1, Qg denote the odometry measurements,
and let ¢ be the vector of current camera measurements. The
camera measurements are assumed to be corrupted by white
Gaussian noise, with associated covariance matrix P.,,,. The
proposed value for the propagated state vector is
o= Ay + (1 — /\) <§§1> = F(.’i‘g\ (21, Qz)

2
where 0 < A < 1. The motivation for this estimate is the
following. It the odometry were error-free, then (Q1,Q,)",
Le. A = 0, would give the correct propagated value for the
state. In the face of inevitable odometry errors, it is possible to
exploit the fact that the path followed by an AGV is such that
true odometry values in subsequent time intervals are strongly
correlated. One can consequently use the previous estimate of
the state to reduce the odometry noise in (Ql, Qg)’.

Note that the parameter ) is used as a simple method to
smooth some of the fluctuations in the odometry readings.
We emphasize that even with \ — 0 our filter works in a
satisfactory manner. A possible improvement of the prediction
phase is 1o take into account the path the vehicle is supposed
L0 traverse and make A vary accordingly: in segments where
the path is without acceleration \ should be high. An inner
loop Kalman filter may be employed here with the prediction
of the state being based on the trajectory the vehicle should
perform at the current time step, and the update of the state
being based on the odometry readings. We thank a reviewer
for this comment.

Assuming that the odometry measurement noise is uncor-
related with the current odometry error, a straightforward
manipulation shows that the covariance of the predicted es-

imate 7~ jg
| P i’i]b(ﬂ),} OF o OF )1
: 1 g diy ()Ql ! d@l
j (4‘)[’1 2< u;ﬁ ) '
05 1 ———
Q2 T\ IQ,
. Do
= /\2[) - 2 Ul e
o+ (=X (0 a2
Where 2

Prediction 7

o -y

is the variance of (27 around ;. Next, update the

using the camera measurement ¢ as follows.
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Choose g as g; or g, from (19) or (20) and compute

-l ()
o ~\0Q,0Q; )|,
H‘):8g2<3g@ g dg )( ‘
T 07 \90.000(6, or U) g or V) G

The Kalman gain is computed as

K =P H{(H\PTH! + H, P,

~1
H;)
and the update equations are

T
P

@+ K(=g(27,¢))
(I - KH)P;.

(Note that since the measurements (11) and (15) are implicit,
we use the implicit Kalman filter formulation).

Given the new estimate 4 for (Q1,Q2) of the current time
interval, compute the new position and orientation of the
vehicle by adding the quantities in (16)—(18) multiplied by
At to the current values of (@, y,.6,). On doing this, the
quantities As and Ad, are computed by using the values of 7.

IV. USING ANGLES ONLY MEASUREMENTS

In the previous sections, it was shown how fixation may be
used to update the estimates of the quantities @, @» which
determine the motion of the vehicle. These quantities can
subsequently be integrated to obtain the position of the vehicle.
The measurements needed to carry out that procedure included
the camera angles, and in addition either the derivatives of
these angles or the FOE. This section shows that if the
measurements obtained from the vision system are restricted
to the camera angles only, fixation can still be used as an aid
to odometry. Notice that in the present case an initial estimate
of the coordinates of the fixation point must be available. It is
also important to stress that the angle measurements and the
coordinates of the point are not used to compute the position
of the vehicle directly. To do that, additional information in the
form of a range measurement or angles to another landmark
would be required. Instead, the angle measurements and the
best known estimate of the relative posttion of the point with
respect to the vehicle are used to estimate the true dynamics
of the vehicle, based on the approximate dynamics reported
by odometry.

Suppose that the camera fixates on a point with scene
coordinates (a.b,c)". Letz = a—u,, y = b—y,and z = c—}
be the relative position of the point with respect to the camera,
and let 77 be the change in odometry reading between time
k — 1 and k. Due to unavoidable errors, when computing
the movement of the vehicle based on these measurements,
the difference between the current and the computed location
will increase with time. The evolution of the error Eg between
the real displacement and the one reported by the odometry
is illustrated in Fig. 2. If the odometry reports a displace-
ment vector 17y along the z axis, then the real displacement
can be written as ¥ = Mo + gg. Consequently, when the
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Y A and
-1 0
0 -1
B=1|uv 0 (26)
0 0
0 0

D)e
bo

moO

Fig. 2. Odometry bias model.

odometry reading reports /1. in direction ¢ = arg ni, the real
displacement is given by 7 + by, where

Py cosf -~ sind i
4 — . DB
sinf o cosf )Y
The odometry errors can now be incorporated as additional
states to the state-vector

(21

Fl
R
! Y
f= Y =] = (22)
= bo oy
/,10 0
()0,/

The dynamics assoctated with this state-vectors can be written
as follows. If from time A — | to & the odometry reports a
displacement 773, then letting # = arg m, an improved estimate
for the state at time £ is

IR =T
. =1 . —(m+1
<.2/A. > <,’/L:1 > (7 + by)

where

(v()s f
) Ksin f
Thus, before incorporating the measurements, the propagated
state-vector 18 given by

- —siné .
by j bog 1. (23)
cosf

/

"./.'V B A\().I'/', -1 -+ Blﬁ (24)
where
L0 0 —cosd sinf
O L 0 —smnf —cosf
P 0o 1 0 0 (25)
0 0 0 i 0
0 0 0 () 1

Using the standard EKF equations, if P, denotes the co-
variance of the state at time & — 1, the covariance propagated
to time A iS given by

PT = AgDP_1 A

The next step is to take the measurement ¢ = (H @)'. Consider

) <(“ > < arctan £ > ar
glr) =1 = arctan ——— 27)
g2 wretan —

and define

Q)

A (28)
Jir (5
i,

Similarly as before, the Kalman gain 1s computed as
K =P H(HP H + P.,)""
and the update equations are

I =y K (C—glig))
P.=(l-KH)P_ .

A. Localization Procedure

The formulation above is suitable for the case when the ve-
hicle starts at a known location, and the camera measurements
suffice to keep the odometry errors bounded. If, alternatively,
the initial location is unknown, fixation has not been achieved
for some time, or errors have grown so large that the EKF does
not longer perform satisfactorily, then an alternative approach
is required. In this section. a localization procedure based on
fixation is presented. The procedure is to be invoked when the
absolute position error is large, i.e. the vehicle is “lost.”

During the procedure, a certain path (say a square) is
followed by the vehicle, while the camera is fixating on a
fixation point. Assume the odometry displacement reports are
accurate with respect to the large absolute position error.
Define the state vector to be # = (r.y.z)", ie., only the
relative position coordinates. By following the same Kalman
filter formulation as above, the position will get updated as
the vehicle follows the path. Once the updates stabilize and
conform with the odometry reported displacements, the vehicle
is localized once again. The difference from the previous
scenario is that in the first scenario the nitial state is assumed
to be close to the true state (in the position coordinates). In
this scenario, however, the initial state is very distant from
the true state.

One must note however that for this focalization procedure
to work, the vehicle should know its orientation in the scene
coordinate system: we assume the measurement vector is
o= (H £) [see (27)] and # is the pan angle with respect
to the scene = axis. In addition, since we arc estimating the
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relative position with respect to the landmark, in order to know
our absolute position we must of course know the absolute
coordinates of the landmark.

V. RESULTS

A. Simulation Results

The geometric constraint algorithm was tested by running a
simulation program. The program “moves” the “true” vehicle
according to some preset path. At each time step the “true”
odometry readings are corrupted by adding a normal, zero-
mean distributed noise. with variance proportional to the
squared “true” value. In addition the “true” camera read-
ings are corrupted with noise. These “true” readings may be
simulated since we know the vehicle’s “true” position. The
corrupted odometry readings and camera readings are fed
nto the algorithm, and an estimated path is computed and
displayed.

The simulated vehicle is moving at a speed of about 70 cm/s.
The radit of the wheels is 5 ¢cm and the baseline distance is
40 cm. Odometry noise was assumed to be normal with zero
mean and a standard deviation of about 3% of the readings
value. Later on a bias was also simulated by adding to one
of wheels’ true odometry value a uniform random variable
between (—1/3.2/3) multiplied by some constant, so that
again the standard deviation will be around 3% of the true
value. The camera measurement noise was assumed to be
normal with zero mean and standard deviation as follows:

* 1° for the (., p) angle readings;

* 30 = 10% of the true value for (O'C.‘, ) readings.

The initial standard deviations of the errors in the odometry
readings were taken as 3% of the true value. The A\ parameter
was taken as 0.5.

Fig. 3 shows graphically the results of a sample run. The
figure shows the “true” path followed by the vehicle, the path
that was computed based solely on e~dometry readings, and
the path computed using fusion of camera measurements and
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Fig. 4. Per run average odometry versus average fixation error.

odometry readings. We ran the simulation for 100 times and
recorded for every run the average (along the path) odometry
error and the average error in the position estimate based on
our method. Fig. 4 compares these errors. The contribution of
fixation to the reduction of odometry errors may be seen.

We have checked consistency of the Kalman filter by
using the measures described in [4], namely NEES, NIS, and
whiteness of innovations. NEES is the normalized estimation
error squared and should be distributed Chi square with 2 DOF
(our state vector is 2-D). It is used to check that the variability
in the actual errors of the estimated state indeed agrees with the
covariance matrix that the filter estimates. Similarly NIS which
is the normalized innovation squared should be Chi square
with 1 DOF. The whiteness test checks correlation between
mnovations at different times. We have checked whiteness
between time step & and time step & + 1 (for every k).

We have summed the NEES values over the 100 runs, for
every time step. This sum should be Chi square with 200
DOF which may be approximated as normal by the Central
Limit Theorem. Fig. 5 shows this sum after normalization to
a standard (zero mean, unit variance) normal variable. The
range this normalized sum has to be in with probability of 95%
is marked on the figure. As we can see we cannot reject the
hypothesis that the NEES is distributed as expected. Similarly,
Fig. 6 shows the normalized sum of 100 NIS values for every
time step, and the range in which this sum should be with the
same probability of 95%.

Correlation between innovations at subsequent time Steps
was checked both by looking at the 100-run sample autocor-
relation, and by looking at the time-average autocorrelation
of each of the 100 runs by itself. Figs. 7 and 8 show the
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computed statistics and the range in which they should fall
with probability 95%. Once again it is evident we cannot reject
the hypothesis that the innovations form a white noise process.

B. Biased Noise

Fig. 9 presents graphically the results of a sample run where
odometry readings were corrupted with biased noise. The
readings of the left wheel were biased upwards and indeed it
is evident in the figure that the path computed from odometry
readings tends to turn to the right. It can be seen that when
the camera measurements are fused with those readings, the
error is reduced. Fig. 10 shows the average errors along the
path for 100 runs of biased odometry noise.

C. Experimental Results

Two experiments were conducted to test the formula-
tion presented in Section IV, using a Nomad 200 robot

:*
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Fig. 11.

Instrumented Nomad 200.

instrumented with a Canon VC-C1 video camera, as shown
m Fig. 1]. ‘

In the first experiment the robot moved back and forth along
a stratght line segment 3 m long. Every 50 c¢cm the camera
fixated on the fixation point, which was about 2 m away. The
Segment was traversed six times. Fig. 12 shows in a dashed
line the odometry errors, and in a continuous line the errors in
the position determined by the EKF formulated in Section 1V.
The average error along the x axis is 4.2 cm. as compared to
4154 cm average odometry error, and along the y axis the
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average error is 1.3 cm as compared with a 4.8 cm average
odometry error.

The second esperiment shows the feasibility of the local-
ization procedure snggested previously. The robot was placed
at (0,0). The odometry counters were set to a point which
is a few meters away——thus simulating a scenario where the
robot is lost. The robot then moved along a square path while
fixating on a point. The length of the side of the square was 60
cm. At each corner of the square the camera angles were read.
The absolute position was then estimated using an iterated
EKF as described in the previous section. Figs. 1315 show
how the error in absolute position decreases as more and more
measurements are taken. The final error is a few centimeters
although the initial error was a few meters.

We remark that a regular EKF did not suffice for the
localization procedure. In the first two experiments (Figs. 13
and 14) five iterations of the EKF were sufficient, and in the
third experiment (Fig. 15) 25 iterations were used.
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VI. CONCLUSIONS AND FURTHER WORK

This paper addressed the problem of autonomous guided
vehicle navigation. Exploiting the technical possibility to in-
strument the vehicle with a point-able camera, the approach
presented is to use odometry as the basic navigation tool,
but to reduce the inevitable odometry errors by an external
measurement generated by the camera mounted on the AGV.
The camera is performing fixation on a certain point. Since
fixation is a relatively simple computational task, the camera
may be able to fixate on the point continuously as the vehicle
is moving. Thus the algorithm does not require the vehicle to
stop every once in a while for computing its position. Since
the fusion of odometry and camera measurements is done by
a Kalman filter and is not computationally expensive, the only
cost of the algorithm is a dedicated camera.

It was shown that by fixating on a landmark one can improve
the navigation accuracy even if the scene coordinates of the
landmark are unknown. This is a major improvement over
previous methods which assume that the coordinates of the
landmark are known. In particular, using this approach any
point of the observed scene may be selected as the landmark,
and not just pre-measured points.

It was also shown that if an initial estimate of the coordi-
nates of the landmark does exist, then very simple measure-
ments are needed from the vision system. This was verified
experimentally. Since only one point needs to be tracked
by the vision system, there is no need to be able to distin-
guish between different landmarks as is done in other works.
This makes the implementation of the algorithm a simpler
task.

Further work is needed to analyze the effects of choosing
different fixation points. The performance of the algorithm
varies as the geometry of the fixation point and the vehicle’s
path change. Observability analysis of the system is expected
to give some insight on the optimal choice of a fixation point
given a certain path the vehicle should traverse.
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