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ABSTRACT
Lock-free data structures provide a progress guarantee and
are known for facilitating scalability, avoiding deadlocks and
livelocks, and providing guaranteed system responsiveness.
In this paper we present a design for a lock-free balanced
tree, specifically, a B+tree. The B+tree data structure has
an important practical applications, and is used in various
storage-system products. As far as we know this is the first
design of a lock-free, dynamic, and balanced tree, that em-
ploys standard compare-and-swap operations.

Categories and Subject Descriptors
E.1 [Data]: Data Structures—trees, distributed data struc-
tures; D.1.3 [Software]: Programming Techniques—Con-
current Programming

General Terms
Algorithms, Design, Theory

Keywords
Concurrent Data Structures, Progress Guarantee, Lock-Freedom,
B+tree, Parallel Programming

1. INTRODUCTION
The growing popularity of parallel computing is accom-

panied by an acute need for data structures that execute
efficiently and provide guaranteed progress on parallel plat-
forms. Lock-free data structures provide a progress guaran-
tee: if the program threads are run sufficiently long, then
at least one of them must make progress. This ensures that
the program as a whole progresses and is never blocked. Al-
though lock-free algorithms exist for various data structures,
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lock-free balanced trees have been considered difficult to con-
struct and as far as we know a construction for a lock-free
balanced tree is not known.

In recent decades, the B-tree has been the data structure
of choice for maintaining searchable, ordered data on disk.
Traditional B-trees are effective in large part because they
minimize the number of disk blocks accessed during a search.
When using a B-tree on the computer memory, a reasonable
choice is to keep a node on a single cache line. However,
some studies show that a block size that is a (small) factor
of the processor’s cache line can deliver better performance
if cache pre-fetching is employed by the hardware [14, 5].
Further details about the B-Tree structure and the B+tree
variant appear in Subsection 2.1.

This paper presents the first lock-free, linearizable, dy-
namic B+tree implementation supporting searches, inser-
tions, and deletions. It is dynamic in the sense that there
is no (static) limit to the number of nodes that can be al-
located and put in the tree. The construction employs only
reads, writes, and (single-word) CAS instructions. Searches
are not delayed by rebalancing operations. The construc-
tion employs the lock-free chunk mechanism proposed in
[4]. The chunk mechanism provides a lock-free linked list
that resides on a consecutive chunk of memory and main-
tains lower- and upper-bound on the number of elements.
The chunks are split or joined with other chunks to main-
tain the bounds in the presence of insertions and deletions.
This lock-free chunk mechanism fits naturally with a node
of the B+tree that is split and joined, keeping the number
of elements within given bounds, and thus maintaining the
balance of the tree.

Our construction follows some basic design decisions that
reduce the complexity of the algorithm. First, a node marked
by the need to join or split is frozen, and no more operations
are allowed on it. It is never resurrected, and one or two
nodes are allocated to replace it. This eliminates much of
the difficulty with threads waking up after a long idle period
and encountering an old node that has been split or joined.
In general, a node begins its lifespan as an infant, proceeds
to become a normal node, and remains so until frozen for a
split or a join, after which it is eventually reclaimed. This
monotonic progress, reflected in the node’s state, simplifies
the design. The replacement of old nodes with new ones
is challenging as data may be held in both the old and the
new nodes simultaneously. To allow lock-freedom, we let
the search operation dive into old nodes as well as new ones.
But to ensure linearizability, we only allow new nodes to be
modified after the replacement procedure is completed. Ad-



ditionally, we take special care in the selection of a neighbor-
ing node to join with, to ensure that it cooperates correctly.
Finally, we enforce the invariant that two join nodes always
have the same parent. Our construction follows important
lock-free techniques that have been previously used. In par-
ticular, we mark pointers to signify deletion following Harris
[9], we assign nodes with states similarly to Ellen et al. [7].
We also propose new techniques that might be useful for fu-
ture work, e.g., we use a gradual state transition for a node
by gradually moving it from the normal to the frozen state,
by marking its fields one by one as frozen.
This design of the lock-free B+tree is meant to show the

feasibility of a lock-free balanced tree. It is quite complex
and we have not added (even straightforward) optimizations.
We implemented the design (as is) in C and ran it against an
implementation of a standard lock-based B+tree [15]. The
results show that the lock-based version wins when no con-
tention exists or the contention is very low. However, as
contention kicks in, the lock-free B+tree behaves much bet-
ter than the lock-based version. The lock-free tree is highly
scalable and allows good progress even when many threads
are executing concurrently. Similarly to the lock-free al-
gorithm of the linked-list, a wait-free variant of the search
method (denoted contains) can be defined here in the same
manner. Again, to keep it simple, we do not spell it out.
In addition to implementing and measuring the algorithm,

we also provide the full proof for the correctness of this de-
sign in the full version of this paper [3] with respect to lin-
earizability [11] and (bounded) lock-freedom [10, 13]. Note
that a balanced tree has a better worst-case behavior com-
pared to regular trees. Ignoring concurrency, each opera-
tion has a worst-case complexity of O(log n) in contrast to a
worst-case complexity of O(n) for an imbalanced tree. Fur-
thermore, in the presence of concurrent threads, we prove
that progress must be made at worst-case within O(T log n+
T 2) computational steps, where T is number of the con-
current running threads and n is number of keys in the
B+tree. (This means bounded lock-freedom with bound
O(T log n+T 2).) Such guarantee can only be achieved with
balanced trees, as computing a similar bound on the worst-
case time to make progress in a non-balanced tree would
yield O(Tn)1.
Previous work on lock-free trees include Fraser’s construc-

tion [8] of a lock-free balanced tree that builds on a transac-
tional memory system. Our work does not require any spe-
cial underlying system support. Fraser also presents a con-
struction of a lock-free tree that uses multiple-word CAS [8],
but this construction offers no balancing and at worst may
require a linear complexity for the tree operations. Recently,
Ellen et al. [7] presented a lock-free tree using a single-word
CAS, but their tree offers no balancing. Bender et al. [2]
described a lock-free implementation of a cache-oblivious B-
tree from LL/SC operations. Our construction uses single-
word CAS operations. Moreover, a packed-memory cache-
oblivious B-tree is not equivalent to the traditional B+tree
data structure. First, it only guarantees amortized time
complexity (even with no contention), as the data is kept
in an array that needs to be extended occasionally by copy-
ing the entire data structure. Second, it does not keep the
shallow structure and is thus not suitable for use with file

1Actually, we do not know how to show a lock-free bound
which is lower than O(T 2n) for non-balanced concurrent
trees.

systems. Finally, a full version of [2] has not yet appeared
and some details of lock-free implementation are not speci-
fied.

In Section 2 we set up some preliminaries and present the
B+tree representation in the memory together with the ba-
sic B+tree algorithms. In Section 3 we describe the B+tree
node’s states and recall the lock-free chunk functionality
from [4]. Balancing functions are presented in Section 4,
and the implementation and results are described in Section
5. In Section 6 we describe the linearization points. We
conclude in Section 7. In the full version of this paper [3]
more details and the entire pseudo-code can be found. In
addition, the full correctness, linearizability and bounded
lock-freedom proof is presented in [3] as well.

2. BACKGROUND AND DATA STRUCTURE
This section presents the underlying data structures used

to implement the lock-free B+tree, starting with a review of
the lock-free chunk mechanism presented in [4].

A chunk is a (consecutive) block of memory that contains
entries. Each entry contains a key and a data field, and
the entries are stored in the chunk as a key-ordered linked
list. A chunk consumes a fixed amount of space and has
two parameters, determining the minimum and maximum
entries that may reside in it. The chunk supports set oper-
ations such as search, insert and delete. When an insert of
a new entry increases the number of entries above the max-
imum, a split is executed and two chunks are created from
the original chunk. Similarly, when a deletion violates the
minimum number of entries, the chunk mechanism joins this
chunk and another chunk, obtained from the data structure
using the chunks (in particular the B+tree). Therefore, the
B+tree implements a method that the chunk can call to ob-
tain a partner to join with. A different B+tree method is
called by the chunk mechanism when the split or join are
completed to ask that the tree replaces the frozen nodes
with new ones. The chunk also supports an additional re-
place operation that allows replacing the data of an entry
with a new value atomically without modifying the entry’s
location in the list. This operation is useful for switching a
descendant without modifying the key associated with it2.
All operations are lock-free.

2.1 The B+tree
A B+tree [6] is a balanced tree used to maintain a set of

keys, and a mapping from each key to its associated data.
Each node of the tree holds entries; each entry has a key and
an auxiliary data. In contrast to a B-tree, only the leaves in
a B+tree hold the keys and their associated data. The data
of the keys in the internal nodes is used to allow navigating
through the tree. Thus, data in an internal node of the tree
contains pointers to descendants of the internal node. The
B+tree structure simplifies the tree insertions and deletions
and is commonly used for concurrent access. In our variant
of a B+tree, key repetition is not allowed.

Each internal node consists of an ordered list of entries
containing keys and their associated pointers. A tree search
starts at the root and chooses a descendant according to the
values of the keys, the convention being that the entry’s key
provides the upper bound on the set of keys in its subtree.

2The replace operation did not appear in the short confer-
ence version of [4] and is described in [3].
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Figure 1: The structure of a chunk. The allocated grey entries present the ordered linked list.

Each node has a minimum and maximum number of possible
entries in it. In our B+tree the maximum is assumed to be
even and is denoted d. The minimum is set to d/2− 3. For
d ≥ 10 this ensures the balance of the tree, and specifically
that the number of nodes to be read before reaching a leaf
is bounded by a logarithm of the tree size. All insertions
and deletions happen at leaves. When an insert violates the
maximum allowed number of entries in the node, a split is
performed on that node. When a deletion violates the min-
imum allowed number of entries, the algorithm attempts to
join two nodes, resulting in borrowing entries from a neigh-
boring node or merging the two nodes, if moving entries is
not possible.
Splitting and joining leaves may, in turn, imply an insert

or a delete to the parent, and such an update may roll up
until the root. We ignore the minimum number of entries
on the root, in order not to enforce a minimal number of
entries in the tree. Note that splits and joins always create
nodes with a legitimate number of entries. In practice, the
minimum value is sometimes set to be smaller than d/2− 3
to avoid frequent splits and joins.

2.2 The structure of the proposed B+tree
For simplicity, our construction assumes the key and the

data fit into a single word. This is the assumption of the
chunk mechanism and it makes the allocation of a new entry
easier. In practice, this means a word of 64 bits, with a key of
32 bits and data of 32 bits.3 An architecture that provides
a double-word compare-and-swap would allow using a full
word for each of the fields, removing the restrictions, and
simplifying the construction. The key values are taken from
a finite set, bounded from above by a value that we denote
∞. The tree is represented by a pointer to the root node,
initially set to an empty root-leaf node.
Our B+tree node is built using the chunk structure of [4].

The chunk’s maximum and minimum number of entries are
set to d and d/2− 3 to satisfy the B+tree node requirement
(except for the zero minimum bound on the root). In addi-
tion to a chunk, the tree node contains two additional fields
to support its management: a height field indicating the dis-

3Since a data field cannot hold a full pointer, we assume a
translation table, or some base pointer to which the 32-bit
address is added to create the real memory address. In the
first case, this limits the number of nodes to 232 nodes, and
in the second case, it limits the entire tree space to 4GB,
which is not a harsh constraint.

tance from the leaves and a root flag indicating whether the
node is a root.

We briefly review the fields of a chunk (Figure 1). A
detailed discussion appears in [4]. The main part of the
chunk is an array that contains the entries. The counter
field counts the number of entries in a chunk. It is accurate
during sequential execution and is always guaranteed to hold
a lower bound on the real count, even in the presence of con-
current executions. The pointers new, joinBuddy, nextNew
and creator point to nodes involved in the rebalancing, to be
described below in Section 4. The split and join of a chunk
requires a freeze of all operations on it, which imposes the
freeze state of a chunk to be declared using freezeState field.
The freezing mechanism is explained later, in Section 3.

2.3 Memory Management
To avoid some of the ABA problems, lock-free algorithms

typically rely on garbage collection or use the hazard pointer
mechanism of Michael [12]. To simplify the current presen-
tation, we assume the existence of garbage collection for the
nodes. This means that nodes are never reused unless they
become unreachable from all threads. An extension of the
same scheme to a use of hazard pointers is possible.4

2.4 The Basic B+tree Operations
The B+tree interface methods: SearchInBtree(), InsertTo-

Btree(), and DeleteFromBtree() are quite simple. The code
of the basic B+tree operations appear in Algorithm 1. An
insert, delete, or search operation first finds the leaf with the
relevant key range, after which the appropriate chunk oper-
ation is run on the leaf’s chunk. It either simply succeeds or
a more complicated action of a split or a join begins. Some
care is needed when the suitable leaf is a new one (an in-
fant), whose insertion into the B+tree is not yet complete.
In that case, we must help finish the insertion of the new
node before continuing to perform the operation on it. Fur-
ther explanations on the freezing of a node, on the infant
state, etc. appear in Section 3.

Two important methods support the general use of the
B+tree. The first one is the FindLeaf() method that is used
for finding a leaf whose associated range of values contains
a given key. The second widely used supporting method is
FindParent(). When a split or a merge occurs, we may need
to find the parent of the current node in order to modify its

4In the implementation we measured, we implemented haz-
ard pointers inside the chunk and did not reclaim full nodes
at all during the execution.



Algorithm 1 Search, Insert, and Delete – High Level Meth-
ods.
(a) Bool SearchInBtree (key, data) {
1: Node* node = FindLeaf(key);
2: return SearchInChunk(&(node→chunk), key, data);

}
(b) Bool InsertToBtree (key, data) {
1: Node* node = FindLeaf(key);
2: if (node→freezeState == infant)
3: helpInfant(node); // Help infant node
4: return InsertToChunk(&(node→chunk), key, data);

}
(c) Bool DeleteFromBtree (key, data) {
1: Node* node = FindLeaf(key);
2: if (node→freezeState == infant)
3: helpInfant(node); // Help infant node
4: return DeleteInChunk(&(node→chunk), key);

}

pointers.5 Furthermore, we may need to find an adjacent
node as a partner for a merge, when a node gets too sparse.
The FindLeaf() and FindParent() methods are presented in
detail in [3].

3. SPLITS AND JOINS WITH FREEZING
Before it is split or joined, a node’s chunk must be frozen.

The complete details appear in [4]. The freezing is executed
by the chunk mechanism when its size limits are violated.
This happens obliviously to the containing data structure,
in this case, the B+tree. Here we provide an overview on
the chunk’s freeze required to understand the B+tree algo-
rithm. To freeze a node, i.e., to freeze the chunk in it, all
the chunk’s entries are marked frozen (one by one) by set-
ting a designated bit in each entry. After all the entries
are marked frozen, no changes can occur on this node. A
thread that discovers that a node needs to be frozen, or that
a freeze has already begun, helps finish freezing the node.
However, search operations do not need to help in freeze and
can progress on the frozen nodes. Since changes may occur
before all entries are marked frozen, the final state of the
frozen node may not require a split or a join at the end of
the freeze. Still a frozen node is never resurrected. After
the freeze has been marked and the node can no longer be
modified, a decision is made on whether it should be split,
or joined with a neighboring node, or just copied into a sin-
gle new node. If a join is required, then a neighboring node
is found by the B+tree. This communication between the
chunk and the B+tree is implemented using a predetermined
method FindJoinSlave() that the tree supplies and the chunk
mechanism uses. Then the neighboring chunk is frozen too.
To recover from the node freeze, one or two nodes are allo-
cated, and the live entries in the frozen node (or nodes) are
copied into the new node (or nodes). Thereafter, a B+tree
method CallForUpdate() is called to let the tree replace the
frozen nodes with the new ones. We focus in what follows
on issues specific to the B+tree, i.e., finding a neighbor, re-

5Note that attempting to maintain a list of parent pointers
is difficult for a B-Tree as each parent has a large number
of children nodes that need to be simultaneously updated
when the parent is modified via a split or a merge

placing the frozen nodes with the new ones in the B+tree,
and maybe rolling up more splits or joins.

Each tree node has a freezeState field, holding one of eight
possible freeze states. Three bits are used to store the state.
The freeze state is also a communication link between the
B+tree and the chunk mechanism, and so it can be read and
updated both by the B+tree and by the chunk. When a
new node is created to replace a frozen node, and until it is
properly inserted into the B+tree, its freeze state is marked
as infant. No insertions or deletions are allowed on an
infant node until the node’s freeze state becomes normal.
Any thread that attempts an operation on such a node must
first help move this node from the infant to the normal
state. A node that is properly inserted into the B+tree and
can be used with no restrictions has a normal freeze state.
When an insert or a delete operation violates the maximum
or minimum number of entries, a freeze of that node is initi-
ated and its freeze state becomes freeze. After the freezing
process stabilizes and the node can no longer be modified, a
decision is reached about which action should be taken with
this node. This decision is then marked in its freeze state as
explained below.

When neither split nor join is required (because concur-
rent modifications have resulted in a legitimate number of
entries), the freeze state of the node becomes copy, and the
node is simply copied into a newly allocated node. By the
end of the copy, the parent’s pointer into the old node is re-
placed (using the chunk’s replace operation) with the pointer
to the new node, and the new node becomes normal. When
a split is required, the node’s frozen state changes to split
and all its live entries are copied into two new infant nodes.
These nodes are then inserted into the tree in place of the
frozen node, after which they can become normal. A join
is more complicated since a neighbor must be found and en-
slaved for the purpose of the join. Since only three bits are
required to store the freeze state, we can use the freeze state
to also store a pointer to a join buddy and modify the state
and the pointer together atomically.6 The join process starts
by looking for a neighbor that can be enslaved for the join
and then the freeze state of the join initiator is changed into
request slave together with a pointer to a potential join
buddy in the joinBuddy word. Thus, the freeze state is ac-
tually modified into a pair 〈request slave, slave〉. At the
enslaved node, its state is then modified from normal into
the pair 〈slave freeze, master〉, where master is a pointer
to the node that initiated the join. (Upon failure, we try
to resolve the contention and try again.) When the con-
nection between the join initiator (the master) and the join
slave is finalized, the freeze state of the master is modified
into 〈join, slave〉, where slave points to the determined join
buddy node. The node that is typically chosen for a join is
the immediate left sibling of the current node, except for the
leftmost node, which chooses its immediate right sibling for
the join. A special boundary condition appears when the
two leftmost children of a node try to enslave each other. In
order to break the symmetry in this case, we take special
care to identify this situation and then choose the leftmost
sibling among the two to be the slave. Figure 2 presents the
state transition diagram for the freezeState field.

6An 8-alignment of a node can be assumed in modern sys-
tems and the three redundant least-significant bits can hold
the freeze state
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4. BALANCING THE B+tree
The basic methods for the tree operations have been dis-

cussed in Section 2.4. We now give a description of how
to rebalance the tree following a split or a join of a node,
and discuss the interface between the chunk mechanism and
the tree operations. As explained above, upon violation
of the node size constraints, the chunk mechanism freezes
the node to prevent it from being modified, and then deter-
mines the required rebalancing action (split, join, or copy).
In case of a join, the chunk mechanism invokes the B+tree
method FindJoinSlave(), which finds a join buddy. Later,
the chunk mechanism creates new node(s) and copies the rel-
evant information into them. When this part is completed,
the chunk calls the B+tree method CallForUpdate(). This
method lets the B+tree algorithm replace the frozen node
(or nodes) with the newly created node(s) in the tree. The
CallForUpdate() method actually redirects the calls accord-
ing to whether a split, a copy, or a join occurred. We next
examine each of these cases.
But before diving into the details, note that in general,

upon creation of a node due to a split, a join, or a copy, the
new node’s freeze state is initiated to infant, its root flag is
initiated to false, its height value is copied from the original
node’s height value, and its counter is initiated to the exact
number of entries copied into it. Also, the creator field of a
new node is initiated to contain a pointer to the old node.
the one that initiated the split, join, or copy operation.

4.1 Node Split
After the chunk mechanism executes a split, the original

full node N is frozen, and N ’s new field points to the new
node N1 holding the lower half of the keys from the old node
N . The field N1.nextNew points to the second new node N2

holding the higher half of the keys from the old node N .
The two new nodes’ freeze states are initiated to infant so
that no updates can occur on these nodes until they are in-
serted into the tree. When the chunk split is completed, the
CallForUpdate() method is invoked and in this case it pro-
ceeds by invoking the InsertSplitNodes() method, the code
of which appear in Algorithm 2.
The InsertSplitNodes() method receives a pointer to N

(n in the code), which is the frozen node whose split needs
to be completed), and the sepKey parameter. The sepKey
parameter holds the middle key that ”separates”the two new
nodes. The sepKey key and all lower keys have been placed
in N1 (n1 in the code), and all keys higher than sepKey have
been placed in N2 (n2 in the code).

Replacing the split node N starts by searching for its par-
ent P in the tree, using sepKey for navigation in the tree.
If the parent cannot be found, then the input node is no
longer in the tree. This happens if the new node N1 was
properly inserted by some other thread, and the node N
was disconnected in the process. In this case, the splitting
process proceeds and attempts to insert N2. Otherwise, and
having found the parent, we modify it to point to the new
node N1. This is done by inserting a new entry to P (Line
6). The new entry contains the maximal key from N1 as key
and the pointer to N1 as data. If the insert fails, it means
that someone else has inserted this entry to the chunk and
it is fine to continue. Therefore, we do not check if the in-
sert succeeded. Note the possibility that the parent’s chunk
insert will create a split in the parent, which will recursively
cause a split and roll it up the tree.

After the first new node is in place, we replace the pointer
in the parent node, which points to the frozen node N , with
the pointer to the second new node N2 (Line 9). Again, this
can only fail if another thread has done this earlier. The
ReplaceInChunk()method finds the entry with key and data
as in its third argument and replaces it with key and data as
in its last argument. (The combine() method syntactically
combines the key and the data values into a single word.) In
order to invoke ReplaceInChunk() on the correct parent, we
search for the parent (in the tree) of the split node, using
the maximal key of that node for navigating in the tree.
The second parent search may yield a different parent if
the original parent was concurrently split or joined. After
making the parent point to the two new nodes, it remains to
set their state to normal and return. The splitting process
is complete.

If the original node N was determined to be the root, then
a new root R with two new children N1 and N2 is created.
Next, the B+tree’s root pointer is swapped from pointing



Algorithm 2 The split of a non-root node

void InsertSplitNodes (Node* n, sepKey) { // sepKey is the highest key in the low-values new node
1: Entry* nodeEnt; // Pointer to the parent’s entry pointing to the node about to be split
2: Node* n1 = n→new; // Pointer to the new node that holds the lower keys
3: Node* n2 = n→new→nextNew; // Pointer to the new node that holds the higher keys
4: maxKey = getMaxKey(n); // Get maximal key on the given frozen node
5: if ((parent = FindParent(sepKey, n, &nodeEnt, null)) != null) {
6: InsertToChunk(parent→chunk, sepKey, n1); // Can only fail if someone else completes it before we do
7: }
8: if ((parent = FindParent(maxKey, n, &nodeEnt, null)) != null) {
9: ReplaceInChunk(parent→chunk, nodeEnt→key, // Can only fail if someone else completes it before we do
10: combine(nodeEnt→key, n), combine(nodeEnt→key, n2));
11: }
12: CAS(&(n1→〈freezeState, joinBuddy〉), 〈infant, null〉, 〈normal, null〉); // Update the states of the new nodes
13: CAS(&(n2→〈freezeState, joinBuddy〉), 〈infant, null〉, 〈normal, null〉); // from infant to normal
14: return;

}

Algorithm 3 The code of finding a node partner for a join in the lock-free B+tree.

Node* FindJoinSlave(Node* master) {
1: Node* oldSlave = null;
2: start: anyKey = master→chunk→head→next→key; // Obtain an arbitrary master key
3: if ( (parent = FindParent(anyKey, master, &masterEnt, &slaveEnt)) == null) { // If master is not in the B+tree;
4: return master→〈*, joinBuddy〉; // thus its slave was found and is written in the joinBuddy
5: }
6: slave=slaveEnt→data; // Slave candidate found in the tree

7: // Set master’s freeze state to 〈request slave, slave〉; oldSlave is not null if the code is repeated
8: if ( oldSlave == null ) expState = 〈freeze, null〉; else expState = 〈request slave, oldSlave〉;
9: if ( !CAS(&(master→〈freezeState, joinBuddy〉), expState, 〈request slave, slave〉) ) {
10: // Master’s freeze state can be only request slave, join or slave freeze if the roles were swaped
11: if ( master→〈freezeState,*〉 == 〈join,*〉 ) return master→〈*, joinBuddy〉;
12: }
13: slave = master→〈*, joinBuddy〉; // Current slave is the one pointed by joinBuddy

14: // Check that parent is not in a frozen state and help frozen parent if needed
15: if ( (parent→〈freezeState,*〉 != 〈normal,*〉) && (oldSlave == null) ) {
16: Freeze(parent, 0, 0, master, none, &result); oldSlave = slave; goto start;
17: }
18: // Set slave’s freeze state from 〈normal, null〉 to 〈slave freeze, master〉
19: if ( !SetSlave(master, slave, anyKey, slave→chunk→head→next→key) ) {oldSlave = slave; goto start;}
20: CAS(&(master→〈freezeState, joinBuddy〉),〈request slave, slave〉,〈join, slave〉); // We got the slave, update the master
21: if (master→〈freezeState,*〉 == 〈join,*〉) return slave; else return null;

}

to N to point to R. The details of the root’s split code are
relegated to [3].

4.2 Nodes Join
Establishing the master-slave relationship: We as-

sume that the join is initiated by a sparse node N , denoted
master. The chunk mechanism has frozen the node N and
it has determined that this node has too few entries. To
complete the join, the chunk lets the B+tree find the slave.
The B+tree establishes a master-slave relationship and later
the chunk mechanism joins the entries of both nodes. The
B+tree’s FindJoinSlave() method is responsible for estab-
lishing the master-slave relationship and returning the slave
for the given master. Its code is presented in Algorithm
3. The establishment of the master-slave relationship is de-
scribed below.
The FindJoinSlave() method starts by calling the Find-

Parent() method, which returns a pointer to the master’s
parent node together with the pointers to the master’s and
its potential slave’s entries. The parent node search fails
only if the node N has already been deleted from the tree,

in which case a slave has already been determined and can
be retrieved from the joinBuddy field of N (Line 4). Oth-
erwise, the parent and a potential slave node M were re-
turned by FindParent(). The left-side neighbor is returned
for all nodes except the left-most node, for which a right-
side neighbor is returned. In order to establish the relation-
ship we first change N ’s freeze state from 〈freeze, null〉
to 〈request slave, M〉. (Recall that the joinBuddy field
and the freeze state field are located in a single word.) If
this is not the first try, the field may hold a previous slave
pointer (oldSlave) that we could not enslave. In this case, we
change the value of N ’s freeze state from 〈request slave,
oldSlave〉 to 〈request slave, M〉, where M is the new po-
tential slave. The CAS operation in Line 9 may fail if N ’s
freeze state has already been promoted to join or it has be-
come slave freeze due to swapping of master-slave roles as
explained below. In these cases N ’s final slave was already
set in the joinBuddy field of N . The CAS operation in Line
9 may also fail if another slave was already chosen due to
delay of this CAS operation. In this case, we just use that
slave (Line 13).



Algorithm 4 Setting the slave’s freeze state for a join in the lock-free B+tree.

Bool SetSlave(Node* master, Node* slave, masterKey, slaveKey) {
1: // Set slave’s freeze state from 〈normal, null〉 to 〈slave freeze, master〉
2: while (!CAS(&(slave→〈freezeState,joinBuddy〉),〈normal,null〉,〈slave freeze,master〉)){
3: // Help slave, different helps for frozen slave and infant slave
4: if (slave→〈freezeState, *〉 == 〈infant, *〉) { helpInfant(slave); return false; }
5: elseif (slave→〈freezeState, *〉 == 〈slave freeze,master〉) break; // Completed by someone else
6: else { // The slave is under some kind of freeze, help and look for new slave
7: // Check for a special case: two leftmost nodes try to enslave each other, break the symmetry
8: if ( slave→〈freezeState, *〉 == 〈request slave, master〉 ) {
9: if (masterKey < slaveKey) { // Executing master node is left sibling and should become a slave
10: if ( (master→〈freezeState,joinBuddy〉 == 〈slave freeze,slave〉) ‖ CAS(&(master→〈freezeState,joinBuddy〉),
11: 〈request slave,slave〉, 〈slave freeze,slave〉) ) return true; else return false;
12: else // Current master node is right sibling and the other node should become a slave
13: if ( (slave→〈freezeState,joinBuddy〉 == 〈slave freeze,master〉) ‖ CAS( &(slave→〈freezeState,joinBuddy〉),
14: 〈request slave,master〉, 〈slave freeze,master〉) ) return true; else return false;
15: } // end case of two leftmost nodes trying to enslave each other
16: Freeze(slave, 0, 0, master, enslave, &result); // Help an unrelated freeze activity
17: return false;
18: } // end of investigating the enslaving failure
19: } // end of while
20: MarkChunkFrozen(slave→chunk); StabilizeChunk(slave→chunk); // Slave enslaved successfully. Freeze the slave
21: return true;

}

Lines 15 and 16 are important for keeping the master and
the slave descendants of the same parent This is further
discussed in Subsection 4.3.
After finding a potential slave, we attempt to set its freeze

state to 〈slave freeze, N〉 and freeze it. This is done in the
SetSlave() method presented in Algorithm 4 and explained
in the next paragraph. If this action is not successful, the
FindJoinSlave()method is restarted from scratch. After suc-
ceeding in setting the slave’s freeze state, we change the
master’s state from 〈request slave, M〉, to 〈join, M〉 to
enable the actual join attempts.
The SetSlave() method attempts to CAS the freeze state

of the slave M from 〈normal, null〉 to 〈slave freeze, N〉.
If the CAS of the freeze state in the slave is successful, we
may proceed with the join. But M ’s freeze state isn’t neces-
sarily normal: if it is not, then M is either still an infant or
it is already frozen for some other reason. In the first case,
SetSlave() helps M to become normal and retries to set
M ’s freeze state. In the second case, it helps to complete
M ’s freeze. After finishing the freeze on M , M is frozen
and is not suitable to serve as a slave. Therefore, failure is
returned by SetSlave() and another slave must be found. A
special case occurs when the potential slave M has a master
freeze-state as well and is concurrently attempting to en-
slave N for a join. This case can only happen with the two
leftmost nodes and, if special care is not taken, an infinite
run may result, in which each of the two nodes repeatedly
tries to enslave the other. In order to break the symme-
try, we check explicitly for this case, and let the leftmost
node among the two give up and become the slave, with a
slave freeze state and a pointer to its master (which was
originally meant to be enslaved for it). The FindJoinSlave()
checks for this case in its last line. If it is successful in turn-
ing the freeze state of the master into join, then all is well.
Otherwise, and given that SetSlave() completed successfully,
then it must be the case that the master has become a slave.
In this case, no slave is returned, and the returned null
value tells the calling method (in the chunk mechanism) to
treat the master as the slave.

Finally, the SetSlave() completes by freezing the slave in
Line 20, so that the join can continue. Two methods of the
chunking mechanism are used. The method MarkChunk-
Frozen()marks all entries of a node frozen by setting a desig-
nated bit in each entry. After the entries are marked frozen,
the StabilizeChunk() method ensures that no changes occur
on this node. At this point the slave has been enslaved and
frozen.

Merge: If the number of entries on the master and the
slave is less than d, the chunk mechanism creates a new
single chunk to replace the master and the slave. It then
invokes the CallForUpdate() method to insert the new node
into the tree. We denote this operation as merge. In this sit-
uation, the CallForUpdate() method invokes InsertMergeN-
ode() whose code is presented in Algorithm 5. At this point,
a master-slave relationship has already been established,
both M and N have been frozen, and a new node N1 has
been created with the keys of both M and N merged.

The InsertMergeNode() method’s input parameter is a
pointer to the master, this master’s slave can be found in
the joinBuddy field on the master. The InsertMergeNode()
method starts by checking which of the original nodes (mas-
ter and slave) has higher keys. Denote this node by highN-
ode. Note that the master and the slave are frozen and thus
immutable. Next, FindParent() is invoked on highNode. If
the parent is not found, then highNode has already been
deleted and we can proceed with handling the old node with
the lower keys, lowNode. Otherwise, we modify the parent’s
reference to highNode, to point to the new node (Line 9).
Next, we handle the pointer to lowNode at the parent by at-
tempting to delete it. Finally, we turn the new node’s freeze
status from infant to normal.

Special care is given to the root. We must avoid a root
with a single descendant, which can occur when the two
descendants of a root are merged. In this case, we make the
merged node become the new root. If merged node parent
is found to be root, the MergeRoot() method is invoked
from InsertMergeNode() instead of deleting the pointer to
lowNode at the parent. This is so, because deleting an entry



Algorithm 5 The merge of two old nodes to one new node

void InsertMergeNode (Node* master) {
1: Node* new = master→new; // Pointer to the new node.
2: Node* slave = master→〈*, joinBuddy〉;
3: maxMasterKey = getMaxKey(master); maxSlaveKey = getMaxKey(slave); // Both nodes are frozen
4: if ( maxSlaveKey < maxMasterKey ) { // Find low and high keys among master and slave
5: highKey = maxMasterKey; highNode = master; lowKey = maxSlaveKey; lowNode = slave;
6: } else { highKey = maxSlaveKey; highNode = slave; lowKey = maxMasterKey; lowNode = master; }
7: if ((parent = FindParent(highKey, highNode, &highEnt, null)) != null) {
8: highEntKey = highEnt→key; // Change the highest key entry to point on new node
9: ReplaceInChunk(parent→chunk, highEntKey, // If replacing fails, the parent chunk was updated by a helper
10: combine(highEntKey, highNode), combine(highEntKey, new)); // continue anyway
11: } // If high node cannot be found continue to the low
12: if ((parent = FindParent(lowKey, lowNode, &lowEnt, null)) != null) {
13: if (parent→root) MergeRoot(parent, new, lowNode, lowEnt→key);
14: else DeleteInChunk(&(parent→chunk), lowEnt→key, lowNode); // lowNode is the expected data
15: } // If also low node can no longer be found on the tree, then the merge was completed (by someone else).
16: CAS(&(new→〈freezeState, joinBuddy〉), 〈infant, null〉, 〈normal, null〉); // Update the new node state from infant to normal
17: return;

}

from the root may lead to having a single root descendant.
(The MergeRoot() method is presented in [3].)
Borrow: If the keys of two join nodes cannot fit a single

node, they are copied into two new nodes. This operation
is called borrow. Due to lack of space, the details of the
borrow operation are omitted here and can be found in the
full version of this paper [3]. In a nutshell, the borrow case
has four nodes involved: the master N , the slave M , the
new node with the lower keys N1 and the new node with
the higher keys N2. As in merge case, we start by finding
the high and low keys’ nodes, Nhigh and Nlow, among the
master and the slave. We then take the following steps:
(1) Insert a reference to N1 to the parent node (with the
maximal key on the N1 as the key); (2) Change the parent
entry pointing to Nhigh to point to N2; (3) Delete the parent
entry pointing to Nlow.

4.3 Two Invariants
Let us mention a couple of invariants that our algorithm

maintains. These invariants may give some intuition on how
the algorithm works and why it is correct.
Keys duplication. During the rebalancing operations

described above, it sometimes happens that (for a short
while) two duplicates of a key may become reachable from
the root. However, at no point in the execution will a key
be absent. For example, after the first new node is inserted
to the parent as part of the split, there are keys that re-
side simultaneously in two different nodes: all keys in this
first new node are also still available in the old split node,
which is still in the tree. Similarly, as part of the merge,
when an old frozen node with higher keys is replaced with
the new node, there are keys that appear twice: all keys in
the old frozen node with lower keys now also appear in the
new node. Recall that a search in the B+tree is allowed to
navigate the tree and return the result, based on the data
found on the frozen node.
This does not foil searches in the tree. When a key has

duplicates available in two different reachable tree nodes the
two nodes are immutable. One of these nodes must be frozen
and the other must be an infant. Therefore, old searches may
safely access keys in the old frozen node(s), and new searches

can access the new infant node(s). None of these nodes can
be modified until the rebalance operation terminates.

We should also note that the tree doesn’t grow too big
because of duplication. Another invariant is that there can
only be two copies of a key in the tree. Thus, even though
we may increase the size of the tree during the rebalanc-
ing operations, the increase will be at most by a factor of
two. The factor-two increase is theoretical. In practice, the
increase in the tree size is negligible.

Master-slave bond. We take special care to guarantee
that the master and the slave keep the same parent up to the
end of their join. Initially, the master and the slave are sib-
lings and children of the same node P . However, the parent
node P may then be split and the master and slave may then
have different parent nodes. This may subsequently lead to
an inconsistent tree in which a key does not represent the
highest key in its subtree. Therefore, we enforce an invariant
that the master and slave nodes must remain on the same
parent. Namely, we do not allow the parent entries that
point to a master and to its slave to be separated into differ-
ent nodes due to a parent’s split or borrow, until new nodes
replace the frozen master and slave. Ensuring this variant is
taken care of both during the parent split as well as during
the children join. On the split side, we check whether the
break point between the keys has two descendants that form
a master and a slave. In case they do, we enforce placement
of both on the same new node. However, the descendants
may get into a master-slave relationship only after we make
this check at the parent node. Therefore, on the merge side,
i.e., the descendants’ side, after declaring the intent of a
master to enslave its neighbor (setting the master’s state to
request slave), we check that the master’s parent is not in
a frozen state. If it is, the descendant master helps the par-
ent recover before continuing the descendants’ join (Lines
15, 16). This ensures that the parent split (and borrow,
in a similar way) does not occur obliviously and concur-
rently with its descendants’ join. More about correctness
and progress guarantees can be found in [3].

4.4 Extensions to the Chunk Mechanism
The chunk interface requires some minor modifications

over [4] to properly serve the B+tree construction in this



paper. Probably the most crucial modification arises from
the need to deal with an ABA problem that arises during
insertions and deletions of entries to the chunk of an internal
node in the tree. The concern is that an insert or a delete
may succeed twice due to a helper thread that remains idle
for a while. Consider, for example, a merge and a subsequent
delete of an entry at the parent node. Suppose that one
thread executes the delete, but a second thread attempts this
delete later, after the same key (with a different descendant)
has been entered to the parent again. Thus, a delete should
only succeed when the entry still points to the frozen node.
As for inserts, we need to avoid reentering a pointer to a
child node that has actually been frozen and deleted while
the updating thread was stalled. To solve such problems, we
add versioning to the nextEntry word in the chunk’s linked-
list. This eliminates the ABA problem, as a delayed CAS
will fail and make us recheck the node that we attempt to
insert or delete and discover that it has already been frozen.
All extensions to the chunk mechanism are described in [3].

5. IMPLEMENTATION AND RESULTS
We have implemented the lock-free B+tree presented in

this paper as well as the lock-based B+tree of [15] in the C
programming language. The lock-free design in this paper
can be optimized in many ways. However, we have imple-
mented it as is with no further optimizations. The opera-
tions of the lock-based B+tree progress in a top-down di-
rection. During the descent through the tree, lock-coupling
[1] is employed, i.e., a child is locked before its parent is
unlocked. Exclusive locks on the nodes are used for insert
and delete operations, and shared locks are used for search
operations. Deadlock-freedom is guaranteed by a proactive
approach to rebalancing that splits full nodes or joins sparse
ones, while going down the path to the leaves.
We ran the experiments on the sun fire machine with

an UltraSPARC T1 8-core processor, each core running 4
hyper-threads, running Solaris 10. Overall, the eight cores,
with quad hyper-threading simulates the concurrent execu-
tion of 32 threads. In both implementations the size of a
B+tree node was set to the machine’s virtual page size, i.e.,
8KB. In each test we start with a tree withN random keys in
the range [0, 218] already inserted to it, and during the test,
we apply N operations on it. If the test runs T threads,
then each executes N/T operations. The parameter N was
varied among 104, 105 and 106. The operations consisted of
insertions, deletions and searches in parallel, out of which
20% were insertions, 20% were deletions, and the remaining
60% were searches. All the threads start simultaneously at
the beginning and we measure the time it takes to complete
all operations by all threads.
The right graph of Figure 3 depicts the ratio between the

time it took to complete the runs on the lock-free imple-
mentation as compared to the lock-based implementation.
A result higher than 1 means that the lock-free implemen-
tation is slower. Clearly, the lock-free implementation out-
performs the lock-based implementation when contention is
not low. Note that contention increases as the tree gets
smaller and as the number of threads increases. Also, the
results show that the average cost of an operation increases
as the tree gets larger, because rebalancing may ascend to
higher levels. Such costs are heavier for the lock-free tree,
but this overhead is offset by lock-freedom efficiency when
contention kicks in. The right graph of Figure 3 depicts the

speedup, which clearly shows that the lock-free algorithm is
more scalable.

The weaker performance of the lock-free tree for low con-
tention can be ameliorated by simple optimizations. For ex-
ample, during the split, each thread helping the split copies
the entries from the old node to a newly created private node
and only one of these new nodes eventually replaces the old
node and joins the tree. While threads can cooperate to per-
form copying, we decided to avoid it in this version because
it complicates the design.

6. LINEARIZATION POINTS
When designing a concurrent data structure, it is impor-

tant to spell out the linearization points for the different
operations. This is done in this section. The B+tree meth-
ods all have a similar pattern of operation: they traverse the
B+tree to find the relevant leaf node, and then call the ap-
propriate chunking methods on the leaf’s chunk. Thus the
linearization points of the B+tree are typically based on the
linearization points defined for the chunk in [4].

Search linearization point: The linearization point of
the search operation is exactly the linearization point of the
leaf’s chunk search, as in [4]. In particular, if the leaf is not
frozen, then the linearization point follows that of the under-
lying linked-list in the leaf’s chunk, and if the leaf is frozen
then the linearization point is set to be the point in which
the chunk became frozen. As the freezing mechanism is not
instantaneous, we need to define a point in the freezing pro-
cess more accurately for the linearization point. We follow
[4] and set the linearization point to be the point in the freeze
process by which all the frozen bits have been set and also
the internal list of the freezing node has been stabilized. De-
fine this point as the freezing point. The freezing process of
a chunk is explained more thoroughly in [4]. Formally, con-
sider the linearization point of the search of the linked-list
that is inside the chunk of the leaf (as defined by Harris [9]).
If the chunk’s linked-list search linearization point occurs
before the freezing point, then that is also the linearization
point of the overall tree search. If the chunk’s linked-list
linearization point happens after the freezing point, then
we define the overall tree search linearization point to be
the later point between the freezing point and the point in
which the search started. The latter maximum makes sure
that the linearization point happens during the execution of
the search.

Justifying this choice for non-frozen node is straightfor-
ward. As for frozen nodes, we note that the frozen node
may be replaced with a new node during the search execu-
tion and various actions may be applied on the new node.
But at the freezing point, we know that the values of the
frozen node exist only in the frozen node and are properly
represented by the view of the frozen node.

The delicate case is when the search starts after the freez-
ing point and still gets to the frozen leaf and completes the
search there. In this case, since the search ends up in this
leaf, we know that a new node that replaces this leaf (follow-
ing the end of the freeze) has not yet been modified while
the search traversed the tree, because the rebalancing oper-
ation has not yet terminated at that point. Therefore the
new node has definitely not been modified when the search
started, and the frozen values represent correctly the state
of the tree at that point in time.

Insert and delete linearization points: Unlike the
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Figure 3: The empirical results.

analysis of the search operation, frozen nodes are not haz-
ardous for the insert’s and delete’s initial tree traversing. If
an insert or delete arrive at a frozen leaf, than the Insert-
ToChunk() or theDeleteInChunk()methods will redirect the
operation (after helping the frozen node) to a non-frozen leaf
node. Intuitively, the insert operation is assumed to be fin-
ished when a leaf including the new key is reachable from
the root via data pointers. Similarly, the delete operation is
assumed to be finished when a leaf excluding an old key is
reachable from the root via data pointers. In a worst-case,
this may require more than just handling a freeze.
There are three cases possible here. First, if the insert or

delete operation doesn’t cause a rebalancing activity (split,
merge, borrow, or copy), than the linearization point is sim-
ply determined to be the leaf’s chunk linearization point.
Second, if a rebalancing (by freezing) occurs and if the thread
performing the insert or delete operation has its operation
executed in the node that replaces the frozen node, then the
linearization point of the operation becomes the lineariza-
tion point of the insert operation of the new node to the
parent of the frozen node (replacing the frozen node with
the new one). Note that this definition may be recursive if
the parent requires rebalancing for the insertion. The third
case is when the result of this operation is not reflected in
the node that replaces the frozen one. In this case, we again
define the linearization point recursively, setting it to be the
linearization point of the re-attempted operation on the new
node that replaced the frozen one.

7. CONCLUSIONS
We presented a lock-free dynamic B+tree, which builds

on CAS synchronization. The construction is composed of
a chunk mechanism that provides the low-level node imple-
mentation, including splitting and joining a node, and then
a higher level mechanism which handles the operations at
the tree level. The two mechanisms and their interface are
lock-free. To the best of our knowledge, this is the first
design of a lock-free balanced search tree for a general plat-
form. Results indicate better handling of contention and
higher scalability when compared to the lock-based version
of the B+tree. We have also proven the correctness (with re-
spect to linearizability) of the algorithm and its lock-freedom
property.
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