
Generating Precise and Concise Procedure Summaries

Greta Yorsh ∗

Tel Aviv University, Israel
gretay@post.tau.ac.il

Eran Yahav
IBM T.J. Watson Research Center, USA

eyahav@us.ibm.com

Satish Chandra
IBM T.J. Watson Research Center, USA

satishchandra@us.ibm.com

Abstract
We present a framework for generating procedure summaries that
are precise — applying the summary in a given context yields
the same result as re-analyzing the procedure in that context, and
concise — the summary exploits the commonalities in the ways
the procedure manipulates abstract values, and does not contain
superfluous context information.

The use of a precise and concise procedure summary in mod-
ular analyses provides a way to capture infinitely many possible
contexts in a finite way; in interprocedural analyses, it provides a
compact representation of an explicit input-output summary table
without loss of precision.

We define a class of abstract domains and transformers for
which precise and concise summaries can be efficiently generated
using our framework. Our framework is rich enough to encode a
wide range of problems, including all IFDS and IDE problems.
In addition, we show how the framework is instantiated to pro-
vide novel solutions to two hard problems: modular linear constant
propagation and modular typestate verification, both in the pres-
ence of aliasing. We implemented a prototype of our framework
that computes summaries for the typestate domain, and report on
preliminary experimental results.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Theory of Computa-
tion]: Specifying and Verifying and Reasoning about Programs

General Terms Verification, Reliability, Languages, Algorithms

Keywords summarization, composition, relational analysis, sym-
bolic summary, typestate verification, aliasing, dataflow analysis,
micro-transformers

1. Introduction
The problem of automatically computing procedure summaries is
a fundamental problem in program analysis. Most of the existing
general-purpose approaches to interprocedural analysis (Sharir and
Pnueli 1981; Cousot and Cousot 1978; Reps et al. 1995; Sagiv
et al. 1996b) compute tabulation-based procedure summaries: sum-
maries that are represented as an explicit tabulation of the relation

∗ This research was supported in part by an Eshkol Fellowship.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’08, January 7–12, 2008, San Francisco, California, USA.
Copyright c© 2008 ACM 978-1-59593-689-9/08/0001. . . $5.00

between abstract values at the entry of a procedure, and the corre-
sponding values at its exit. In particular, the commonly used (e.g,.
in Dor et al. (2004); Das et al. (2002); Qadeer and Wu (2004); Jhala
and Majumdar (2007); Fink et al. (2006); Rinetzky et al. (2005))
framework for solving IFDS problems (Reps et al. 1995) performs
explicit tabulation for distributive domains.

However, an explicit input-output table is just one possible rep-
resentation of the procedure’s abstract effect. Indeed, in their sem-
inal works, Cousot and Cousot (1978) with the “relational ap-
proach” and Sharir and Pnueli (1981) with the “functional ap-
proach” represent a procedure summary as a function from input
abstract values to output abstract values. The functional represen-
tation of a summary does not necessarily enumerate input abstract
values; it can also describe how classes of input abstract values are
transformed by the procedure, by referring “symbolically” to ab-
stract values. The difficulty—already acknowledged in (Sharir and
Pnueli 1981)—is in generating such a symbolic summary.

Cousot and Cousot (2002) introduced symbolic relational sep-
arate analysis, a conceptual framework for modular analysis. Our
contribution is in identifying a rich class of problems for which it
is feasible to generate procedure summaries that are symbolic, and
thus, solve these problems using modular analysis. There has been
relatively little previous work on symbolic summarization tech-
niques in this setting. Chatterjee et al. (1999) introduced a modular
points-to analysis. Our work draws inspiration from their work in
identifying relevant behaviors of procedures. Other efforts in this
direction include (Cheng and Hwu 2000; Whaley and Rinard 1999;
Gulwani and Tiwari 2007; Xie and Aiken 2005; Ball et al. 2005),
but we are not aware of a more general framework that computes
symbolic procedure summaries for a wider class of problems.

In this paper, we present a new framework for generating sym-
bolic procedure summaries for a rich class of abstract domains
and transformers over those domains. Given a procedure and a
program-independent description of an abstract domain and its
transformers, our framework automatically computes a symbolic
summary of that procedure. The summary is applicable in any call-
ing context.

Our framework derives procedure-level transformers by sym-
bolic composition of statement-level transformers, and represents
the result of composition in the same form as a statement-level
transformer. The procedure-level transformers—or the procedure
summaries—computed by our framework have the following prop-
erties:
• Precise: applying the summary in a given context yields the

same result as re-analyzing the procedure in that context; no
information is lost during creation of the summary.

• Concise: the summary exploits the commonalities in the ways
the procedure manipulates different abstract values, and does
not contain superfluous context information.

• Efficient: applying the summary in a given context is more
efficient than re-analyzing the procedure in that context.

The procedure itself is a trivial summary of its effect, but of course
it is not “efficient”. We are interested in a summary that captures the
composite effect of a procedure, such that applying the summary
does not use statement-level abstract transformers.

The motivation for generating concise summaries is two-fold.
First, a concise procedure summary provides a way to capture
infinitely many possible contexts in a finite way, and hence, can
be used in modular analyses. For example, a concise summary of
a library can be used when analyzing any client of that library.
Moreover, a summary of a library can be generated before a client
code is written, because a summary can refer to possibly unknown
calling context symbolically. Second, for interprocedural analyses,
a concise summary provides a compact representation of an explicit
input-output summary table, without loss of precision. A concise
summary, that ignores irrelevant context information, is potentially
more compact than, e.g., a shared representation of an explicit
input/output table using BDDs.

We have identified sufficient conditions on the structure of ab-
stract domains and their transformers that guarantee that our frame-
work can automatically compute concise and precise summaries.
The key idea is that the transformers we support make only finitely
many distinctions over input values, and each distinct class of val-
ues behaves uniformly. Rather sophisticated abstract domains and
transformers can be encoded in this restricted form. Not only can
our framework handle the well-known IFDS (Reps et al. 1995) and
IDE (Sagiv et al. 1996a) problems, it can also handle problems such
as modular linear constant propagation in the presence of aliasing,
and modular typestate verification in the presence of aliasing (Fink
et al. 2006). We have created a prototype implementation of modu-
lar typestate verification based on this framework and have run the
analysis on a number of realistic, albeit small programs.

1.1 Overview
Our Approach to Generating Summaries We derive procedure
summaries by symbolic composition of statement-level transform-
ers, as follows. For basic statements, the transformers are given
as input to our framework. For call statements, the transformers
are the summaries of the callees (after replacing formal parame-
ters with actual arguments). For loop statements, the transformer is
computed by iterated composition of the transformer for the loop
body, until the composite transformer reaches a fixpoint. Recursion
and callbacks can be handled similarly to loops. The procedure
summary is simply the composite transformer for the procedure
body.

A sufficient condition for this approach is that the language
of statement-level transformers (summaries) is (a) closed under
composition, i.e., the result of composition is again represented in
the same form as a statement-level transformer, and (b) finite, to
guarantee that iterated composition terminates.

Challenge of Composition When summaries are represented as
explicit relational tables, composition of summaries is easy—albeit
possibly inefficient—to compute, as it corresponds intuitively to the
relational join of the tables. By contrast, for symbolic summaries,
composition of two (symbolic) transformers might not be express-
ible in the same form as transformers, or finding the representation
of transformers might be infeasible to compute.

Given a pair of transformers tr12 and tr23, the goal of composi-
tion is to return a transformer tr13 that precisely captures the com-
posed effect of tr12 and tr23. Intuitively, one can think of these
transformers as relating values in three domains: (A1), (A2), and
(A3), where tr12 transforms values between (A1) and (A2), and tr23

transforms values between (A2) and (A3). The challenge of creat-
ing a precise summary is to relate the values of (A1) and (A3) with-
out explicit mention of the values in (A2). This is shown schemati-
cally in Fig. 1 (a). The key to composition is therefore to represent

g(f(pre12))

(A1)

(A2)

(A3)

tr13

tr12

tr23

(A1)

(A2)tr13

tr12

tr23

(A3)

(a) (b)

(A1)

(A2)

(A3)

pre12

g(pre23)

f(pre12)

wp(pre23)

I

II

tr13
tr12

tr23

(c)

pre23

Figure 1. Schematic view of composition with (a) generic trans-
formers (b) finite domain with distributive transformers (c) condi-
tional micro-transformers.

the restriction imposed on values in (A2) due to the composition of
tr12 and tr23 by expressing them as restrictions in (A1) and in (A3).

In general, avoiding restrictions on values in (A2) is a hard prob-
lem closely related to that of existential quantifier elimination. (The
transformers can be viewed as a symbolic representation of rela-
tions, and their composition corresponds to conjunction and exis-
tential quantification.) However, when the domain and the trans-
formers are of a certain restricted structure, composition becomes
feasible. For example, when the domain is finite and the transform-
ers are distributive, e.g., Fig. 1 (b), the composed effect can be com-
puted via graph reachability (Reps et al. 1995).

Exploiting Structure for Composition The key insight used in
this paper is that by exposing the underlying structure of an abstract
domain and transformers we can express the domain as an aggre-
gate of simpler domains, for which it is feasible to compute the
composition of transformers. That is, the composition of transform-
ers for the aggregate domain can be broken into smaller composi-
tion problems of micro-transformers that apply to the sub-domains,
and so on. We do allow limited interaction between sub-domains.

Micro-transformers in our framework can be expressed as oper-
ating on classes of values in a sub-domain rather than working on
individual elements. We call micro-transformers written in this way
conditional micro-transformers. A conditional micro-transformer
consists of several cases, each of which has a precondition that
defines a distinct class of input values, and a postcondition that
defines how these values are transformed. The idea is to expose
enough structure of the aggregate domain such that all values in the
same class are transformed uniformly, and thus can be described by
simple postconditions.

Just as statement-level transformers that we support make only
finitely many distinctions over input values, the procedure-level
transformer—or the summary—distinguishes between only a finite
number of classes of these values. This reduces the information
that needs to be encoded in a summary from a potentially infinite
context into a finite one.

Composition of Conditional Micro-Transformers Our composi-
tion algorithm leverages the particular structure of transformers we
enforce by considering each class of values separately. Fig. 1 (c)
shows how our algorithm composes a single case of tr12 with a
single case of tr23. The composition is performed in two stages:

(I) expressing the precondition of tr23 (shown as pre23 in A2)
in the domain (A1). This is done by computing the weakest
precondition of pre23 under tr12 as shown by the dotted ar-
row marked (I). The set wp(pre23) expresses the restriction
on values imposed by pre23 in terms of the domain (A1).

(II) expressing the postcondition of tr12 under the effect of tr23

in the domain (A3). Technically, this step is performed by
substitution and is shown by the dotted arrow marked (II).
The set g(f(pre12)) expresses the restriction on values im-
posed by f(pre12) in terms of the domain (A3).

The intersection of wp(pre23) and pre12 expresses the precon-
dition of the composite transformer tr13 in terms of the domain
(A1). The intersection of g(pre23) and g(f(pre12) expresses the
postcondition of tr13 in terms of the domain (A3). Therefore, the
result of composition of conditional micro-transformers can also be
expressed as a conditional micro-transformer.

We give an elaborate description of both steps in Section 4.

1.2 Contributions
The main contributions of this paper are:

• We introduce a formal framework for generating symbolic sum-
maries for a class of abstract domains and transformers, and
show that for those domains and transformers, the framework
produces summaries that are concise, precise and efficient.

• We show how the framework is instantiated to provide novel
solutions to two hard problems: (i) modular typestate verifica-
tion in the presence of aliasing, and (ii) modular linear constant
propagation in the presence of aliasing. We also briefly describe
how the framework can be used to solve a few other problems.

• We present a prototype implementation that computes proce-
dure summaries for the typestate domain. Our experiments
show that our implementation successfully generates sum-
maries for procedures of real (albeit small) programs.

Outline In Sec. 2, we illustrate our method by a simple example
of composition, and introduce our running example. In Sec. 3, we
define the class of abstract domains and transformers handled by
our framework. In Sec. 4, we present the composition algorithm
and outline its properties. In Sec. 5, we describe how the composi-
tion algorithm is put to use in a general framework for generating
procedure summaries and show how to instantiate the framework
for several applications. In Sec. 6, we report on preliminary exper-
imental results obtained using our prototype for generating sum-
maries for typestate domain. Finally, in Sec. 7, we survey related
work.

2. Illustrative Examples
In this section, we present our main ideas at a semi-technical level
using examples. We present two examples: the first one illustrates
our entire approach on a simple analysis problem, and the other one
introduces the important but complex analysis problem of typestate
verification, and is developed gradually throughout the paper.

2.1 Nullness of References
The analysis problem modeled in this example tracks whether the
value of a given reference must be null at runtime. Although meant
for expository purposes, it may also serve as part of an analysis
targeted to statically identify potential null-dereferences.

Domain We use an abstract domain in which the abstract value is
a set of access paths, such that all elements in the set must have the
value null. For a given program, an example value in this abstract
domain could be {p.f, q.ε}, meaning that p.f and q are both null.
Here, p.f is an access path of length 1, and q.ε is an access path of
length 0. We write q instead of q.ε when no confusion is likely.
To guarantee termination of the nullness analysis, the length of
the access paths represented in the nullness domain is bounded.
To simplify the presentation, we bound the length to be at most 1.

class DataReader {
private FileComp f;
void readData(FileComp p) {
init(p);
process();
}
void setComponent(FileComp p) { this.f = p; }
FileComp getComponent() { return this.f; }
void init(FileComp p) {
this.f = p;
f.open();
}
void process() {
FileComp q = this.f;
while (?)
q.read();
q.close();
}
}

Figure 2. A program using the type FileComp.

Let AP denote the set of all access paths of length at most 1;
the abstract domain for this example is therefore P(AP). The do-
main AP is defined as VarId×(FieldId ∪{ε}), where VarId and
FieldId are parameters of the domain, that denote variable names
and field names, respectively: unless they are instantiated for a spe-
cific program, we do not know which specific program variables
and fields they contain. Since AP relies on these parametric do-
mains, it too is a parametric domain.

Transformers Consider the setComponent procedure in the ex-
ample program of Fig. 2. Denoting the set of access paths of the ab-
stract value by M ∈ P(AP), the concise summary (transformer)
for this procedure is:

trP(AP)(M) =
⋃

d∈M

trAP (d)

where trAP (d) is a “micro-transformer” that describes how an el-
ement of the set is individually manipulated by the transformer,
and maps d to a set of resulting elements. This illustrates the gen-
eral pattern of expressing transformers on abstract values in some
domain A in terms of micro-transformers on abstract values in sub-
domains that comprise A. As we shall see later, other examples use
additional domain constructors.

The micro-transformer trAP (d) for setComponent is:

trAP (d) =

{
this.f, p d = p
d d 6= this.f ∧ d 6= p

The format of this transformer is a series of preconditions (shown
on right) and the corresponding output (shown on left). For clarity,
we have written the contents of the returned sets (the left-hand-
side) without the enclosing set brackets, and we have omitted cases
in which the resulting set is empty.

The intuitive meaning of the procedure summary (described
by the micro-transformer) is that if the access path p is known
to have a null value before the procedure, then it has null value
after the procedure, and in addition, the access path this.f must
also have a null value; for all other access paths d such that (d 6=
this.f ∧ d 6= p) before the transformer, their membership in M
remains unchanged.

Composition Now consider an additional procedure nop added
to the class DataReader as follows:

void nop() {
FileComp t = getComponent();
setComponent(t);

}

dd

d t

d=this.f

d≠t ∧
d≠this.f

d=this.f

this.f

t = getComponent() setComponent(t)

d t

d=t

d≠this.f
∧ d≠t d=t

this.f

t = getComponent();
setComponent(t)

d t

d=this.f

d≠t ∧
d≠this.f d=this.f

this.f

=

d

Figure 3. Micro-transformers for nullness of references.

���

d

d=this.f

d≠≠≠≠t ∧∧∧∧
d≠≠≠≠this.f d=this.f

d t

d=t

d=t

this.f this.f

this.f=t

this.f=t

this.f

t=t

t=t

tt t this.f

this.f≠≠≠≠this.f
∧∧∧∧ this.f ≠≠≠≠t

d≠≠≠≠this.f
∧∧∧∧ d≠≠≠≠t

t≠≠≠≠this.f
∧∧∧∧ t≠≠≠≠t

�� � � �
t≠≠≠≠this.f
�

t≠≠≠≠this.f

d:=this.fd:=td:=d

Figure 4. Composition of t=getComponent();setComponent(t).

The micro-transformer for the call t=getComponent() is:

tr12AP (d) =

{
t, this.f d = this.f
d d 6= t ∧ d 6= this.f

The micro-transformer for call setComponent(t) is:

tr23AP (d) =

{
this.f, t d = t
d d 6= this.f ∧ d 6= t

The summary of the entire code sequence inside nop is:

tr13AP (d) =

{
t, this.f d = this.f
d d 6= t ∧ d 6= this.f

The summary of the whole procedure (after the effect on the local
variable t is removed) amounts to the identity function.

Each of the conditional micro-transformers in the composition
example is shown in Fig. 3 in the form of a one-level tree: the
root of the tree represents an input value d, the leaves of the tree
correspond to different output values, whose preconditions appear
on the edges leading to the leaves. In the micro-transformer for
t=getComponent(), the input value is a single access path d.
The edges leading to the leaves t and this.f are labeled with
the precondition d = this.f, representing the first case of the
transformer. The edge leading to the leaf d is labeled with the
precondition d 6= t ∧ d 6= this.f, representing the second case
of the transformer. Note that every leaf corresponds to a term of
the postcondition, and the edge leading to it is labeled with the
precondition that is guarding that term.

We illustrate how our composition algorithm generates a com-
posite micro-transformer for t=getComponent();setComponent(t)
using the conditional micro-transformers for t=getComponent()
and setComponent(t), denoted by tr12AP and tr23AP , respectively.
For each term t(d) in a postcondition of tr12AP (d), we make a copy
of tr23AP (d), in which we replace d with t(d). Fig. 4 depicts this
operation. The top dotted rectangle in the figure depicts the trans-
former for t=getComponent(). The three dotted rectangles at the
bottom depict the copies of the transformer for setComponent(t)
in which d was replaced with t(d) as described above. We label the
root of each tree on the second level with the corresponding assign-
ment of t(d) to d. For example, the rightmost tree corresponds to a
case in which t(d) is this.f.

The two-level tree in Fig. 4 can be used to obtain the result of
composition. A conjunction of preconditions on the path from the
root to a leaf defines a new precondition. We label the leaves for
which the new preconditions are consistent with a checkmark. For
example, the new precondition for the rightmost branch of the tree
is incosistent because the access paths t and this.f are distinct.
1 We simplify the result by removing inconsistent leaves, and re-
placing paths from the root to the remaining leaves with edges.
The result of composition is shown as the rightmost transformer
in Fig. 3.

Other analysis problems present much more challenging tasks
of simplification and subsequent normalization—sometimes re-
quiring domain-specific axioms—but conceptually the idea is the
same.

Properties The summaries that we compute for getComponent()
and setComponent() individually, as well as for their composi-
tion, have all the desired properties: they are concise, precise, and
efficient. The properties depend crucially on the strength of the
composition algorithm: for example, a sound but imprecise algo-
rithm could have lost the fact that the effect of nop() is the identity
function, and in particular, it might fail to establish the fact that
this.f must have a null value after the execution of the code
sequence if it initially had a null value.

To represent a complete summary of setComponent by ex-
plicit tabulation, one would need to describe input-output pairs for
the possibly large number of elements of P(AP), that would de-
pend on the actual program variables and field names outside of
this procedure. In addition, even a partial summary table for this
procedure might contain redundant information.

2.2 Typestate Verification in the Presence of Aliasing
We introduce typestate verification as an example of a more com-
plicated domain. A typestate specification (Strom and Yemini
1986) for a type constrains the sequences of procedure calls that
can be invoked on an object of that type. In the example pro-
gram of Fig. 2, the typestate specification for the type FileComp

contains the following non-error transitions: init open()−→ open,
open read()−→ open, and open close()−→ closed; all other transitions
lead to a designated error state.

Formally, a typestate specification is a deterministic finite-state
automaton with alphabet Σ, states Q, initial state init ∈ Q, final
state err ∈ Q, also called “error state”, and transition function
δσ : Q → Q for each σ ∈ Σ.

Given a program and a typestate specification, the purpose of
typestate verification is to ensure that in all possible executions
of the program, no object can enter an error state. Typestate ver-
ification is a well studied problem (e.g., (Foster et al. 2002; Das
et al. 2002; Dor et al. 2004; Fink et al. 2006; DeLine and Fähndrich
2004; DeLine and Fähndrich 2002; Field et al. 2003)), but most
existing solution provide a limited treatment of aliasing, or lim-
ited scalability. A modular implementation of typestate analysis is
therefore of significant practical interest.

We focus on one abstraction that forms the core of the type-
state verification system of (Fink et al. 2006), which carried out
typestate verification as a non-modular, whole-program interpro-
cedural analysis using this abstraction. In this abstract domain, an
abstract value is a set of dataflow facts. Each dataflow fact refers to
a single allocation site and combines information about the type-
state of an object allocated at that site, and pointer information
related to the same object. In particular, a dataflow fact is of the
form 〈a, s, M〉 where a is an allocation site, s is a typestate from

1 Here, the equality of access paths is a syntactic, as opposed to checking
aliasing between access paths.

{init, open, closed}, and M is a set of access paths (similar to
those used in the null-dereference example) that must point to the
tracked allocation site a. Abstract transformers for this domain are
distributive and, therefore, can be represented pointwise for the set
of dataflow facts. See (Fink et al. 2006) for the rationale behind this
abstraction; suffice it to say that tracking must alias access paths is
crucial for getting a low false positive rate for this verification prob-
lem.

Subsequent sections of the paper show how we model this
composite domain (Sec. 3.1), what are the transformers (Sec. 3.2),
and the details of the composition algorithm (Sec. 4). In particular,
we will see how the composition algorithm obtains the typestate
summary of readData from those of init and process: our
composition algorithm is powerful enough to establish that each
FileComp always goes through correct typestate transitions.

3. Parametric Domains and Transformers
In this section, we describe the abstract domains and transformers
supported by our framework. First, we restrict attention to paramet-
ric abstract domains that are built using simple domain construc-
tors. Then, we restrict the abstract transformers to those defined
via micro-transformers operating on the components of an abstract
value. In particular, in Sec. 3.2, we define the notion of conditional
micro-transformers which is the key to concise representation.

Expressing transformers using micro-transformers allows us to
leverage their structure, and implement a composition algorithm for
generating precise and concise summaries, as described in Sec. 4.

3.1 Domain Constructors
Abstract interpretation (Cousot and Cousot 1977) computes, for
each program point, an abstract value that overapproximates the
sets of concrete program states that actually arise at that program
point. Abstract values are drawn from an abstract domain that usu-
ally depends on the program under analysis. For example, for a pro-
gram with variables x, y, and z, an abstract value for the abstract
domain of constant propagation is a mapping env : {x, y, z} →
(Z∪{>}). Abstract values may also refer to elements of an explic-
itly defined, program-independent, potentially infinite set of atomic
values, such as the states Q of a typestate automaton, or the set of
all naturalsN.

A parametric abstract domain provides a program-independent
description of abstract values in the domain, using domain parame-
ters. A domain parameter is a symbolic place-holder for program-
specific values that are to be bound at a later time. For example, a
parametric abstract domain for constant propagation will introduce
a domain parameter VarId as a place holder for the set of program
variable identifiers.

A parametric abstract domain can be instantiated for a specific
program by binding the domain parameters to program-specific
values (e.g., set of program variables). We refer to an instantiated
parametric domain as a specific abstract domain.

In this paper, we consider abstract domains defined using the
domain constructors of the following definition.

DEFINITION 3.1 (Domain Constructors). An abstract domain A
can be constructed using the following (non-recursive) domain
constructors:

A(χ) ::=| P(A1(χ1)) powerset

| P(A1(χ1)×A2(χ2)) with Prop binary relation
(with properties)

| A1(χ1)× . . .×Ak(χk) with IR (reduced) product
| A1(χ1) ∪A2(χ2) union
| Valj set of atomic values
| Xi parameter

where χ = {X1, . . . , Xn} is a set of parameters; Xi is one of
the parameters, for 1 ≤ i ≤ n; χ1, . . . , χk are subsets of χ;
Val1, . . . , Valm are sets of atomic values; 1 ≤ j ≤ m.

For a binary relation, we support the following standard re-
lational properties Prop: deterministic, reflexive, symmetric, and
transitive. For a product domain, we use integrity rules IR to spec-
ify restrictions on how domains are combined.

Note that these domain constructors can construct both parametric
and specific abstract domains (when χ = ∅). Also, the construc-
tors can use both parameters and atomic values as basic domain
building blocks.

A binary relationP(A1(χ1)×A2(χ2)) with deterministic prop-
erty denotes a (partial) function A1(χ1) → A2(χ2). Binary rela-
tion without properties can be defined using powerset and product
constructors.

Integrity rules allow us to better approximate the reduced prod-
uct (Cousot and Cousot 1979) when combining domains using the
product constructor. That is, if the component domains are not inde-
pendent (e.g., use the same VarId parameter), then some of the tu-
ples in the product domain might represent inconsistent concrete in-
formation. The integrity rules define consistent tuples. For brevity,
we omit the syntax of integrity rules, and the (standard) definition
of the satisfaction relation x |= IR, for a concrete value x.

In Section 4 we explain how properties and integrity rules are
used by the composition algorithm. The composition algorithm
requires decidability of checking certain queries about the set of
abstract values that satisfy Prop and IR.

The following example shows how several standard domains are
expressed using our domain constructors.

EXAMPLE 3.2 (Nullness of References). A set of access paths of
length at most 1 is AP (VarId, FieldId)

def
= VarId× (FieldId∪{ε}),

where VarId and FieldId are domain parameters.
The parametric abstract domain for tracking nullness of refer-

ences is NR(VarId, FieldId)
def
= P(AP (VarId, FieldId)); an abstract

value M ∈ NR(VarId, FieldId) is a set of access paths that must
have null value. ¤

EXAMPLE 3.3 (Typestate). The typestate abstract domain, para-
metric in VarId, FieldId, and AS, is a powerset of D, defined as
follows (omitting the domain parameters).

D = AS ×Q×MustSet× Pts×Alias with IRD
MustSet = P(AP)
Pts = P(AP ×AS)
Alias = P(AP ×AP) with reflexive, symmetric, transitive

Here, a ∈ AS is an allocation site, s ∈ Q is a state of the
typestate automaton, M ∈ MustSet is a set of access paths
that must point to a, pts ∈ Pts is a flow-insensitive points-
to information, and alias ∈ Alias is a flow-insensitive alias
information with reflexive, symmetric, and transitive properties.

A tuple 〈a, s, M, pts, alias〉 satisfies integrity rules IRD iff
• if p ∈ M then 〈p, a〉 ∈ pts, and,
• if 〈p1, a〉 ∈ pts and 〈p2, a〉 ∈ pts then 〈p1, p2〉 ∈ alias. ¤

Notations For a domain A
def
= A1 × . . . × Ak, we use πi(A) to

denote Ai, the i-th component in the product, and πi(a) to denote
ai the i-th component of the tuple a = 〈a1, . . . , ak〉 in A. For
access paths, we use p1.p2 as a shorthand for the tuple 〈p1, p2〉 in
AP . We write p instead of p.ε when no confusion is likely. We omit
the domain parameters from domain identifiers when they are clear
from the context.

Given a parametric abstract domain constructed as above, we
can instantiate it into a specific domain by binding its domain
parameters to values.

DEFINITION 3.4 (Domain Binding). Given a parametric abstract
domain A, and a code fragment s, we use [[A]]s to denote the
abstract values of the specific abstract domain obtained from A
for s. The set [[A]]s is defined inductively:

[[A1×. . .×Ak]]s
def
= {〈c1, . . . , ck〉 | 〈c1, . . . , ck〉 |= IR,∀i.ci ∈ [[Ai]]s}

[[P(A1)]]s
def
= {X | X is finite,X |= Prop, X ⊆ [[A1]]s}

[[A1 ∪A2]]s
def
= [[A1]]s ∪ [[A2]]s

If A is a set of atomic values, then [[A]]s = A. Finally, [[χ]]s is the
set of program-specific values for χ, extracted from the code.

For instance, [[VarId]]s is the set of names of program variables,
[[FieldId]]s is the set of names of pointer fields, and [[AS]]s is the set
of names of allocation sites that appear in s.

EXAMPLE 3.5. For the parametric domain AP (VarId, FieldId)
def
=

VarId × (FieldId ∪ {ε}), we get the set of values [[AP]]x:=y.f is
{x.f, x.ε, y.f, y.ε}, because [[FieldId]]x:=y.f is {f}, and [[VarId]]x:=y.f

is {x, y}.

3.2 Micro-Transformers
Our method is restricted to abstract transformers described in terms
of micro-transformers. Micro-transformers, defined in this sec-
tion, operate on the components of an abstract value. If abstract
transformers for all basic statements are expressed via the micro-
transformers as defined in this section, then the algorithm presented
in Section 4 generates composite transformers, which are also ex-
pressed via micro-transformers.

Let A = P(Q) be the (top-level) abstract domain. We re-
quire that for every basic statement stmt the abstract transformer
trstmt : A → A be expressed using a micro-transformer that oper-
ates pointwise on the values from the domain Q:

trstmt = λX.
⋃

x∈X

trstmt
Q (x)

where trstmt
Q is a micro-transformer for the domain Q. The micro-

transformer trstmt
Q takes a value in Q and returns a set of values in

Q.
A micro-transformer trstmt

Q can be defined using other micro-
transformers that operate on the components of a value from Q, and
so on. Before we proceed to formally define micro-transformers we
first define the notion of query parameters that can be used in a
micro-transformer.

One of the important concepts in this paper is the ability to make
micro-transformers conditional on some information about the con-
text. That is, a micro-transformer that operates on a component a
of the value q ∈ Q can also query another component c of q to de-
termine the effect of a statement on a. We say that q is the context
in which a is transformed, and c is a query parameter.

Formally, given q ∈ Q, cl(q) is a tuple of components of q that
can be queried, and cl(Q) is a tuple of the corresponding domains.
The operations ρj(q) and ρj(Q) return the j-th element of cl(q)
and cl(Q), respectively. We say that ρj(q) is a query parameter.

In the following examples, we assume that queried components
and the corresponding domains are named, and refer to them by
their names (rather than using ρj). For example, for typestate, we
assume that the domain D has the following named components:

cl(〈a, s, M, pts, alias〉) = 〈a, M, pts, alias〉
cl(D) = 〈AS, MustSet, P ts, Alias〉

Given a domain Q, and query parameters for it, we formalize the
notion of micro-transformers. A mapping trs

A : Q → A → P(A)
that takes context q ∈ Q, and value a ∈ A, and returns a set of
values from A, is a micro-transformer for a code fragment s and a
domain A if it can be expressed in the syntax defined below.

In what follows, the same context q is used for all micro-
transformers that are invoked (possibly indirectly) by trQ(q). To
avoid clutter of notations, we refer to value q in the body of micro-
transformers without passing q explicitly as a parameter. That is, we
use the following short syntax of micro-transformers: trs

A : A →
P(A). Here, s denotes the code fragment whose effect is captured
by the transformer. We omit the superscript s when no confusion is
likely.

DEFINITION 3.6 (Micro-transformer Syntax). A micro-transformer
for A is a mapping that can be defined in the following syntax:

trA ::= λa.{a} identity
| λX.{⋃x∈X trA1 (x)} pointwise
| λ〈a1, . . . , ak〉.trA1 (a1)× . . .× trAk

(ak) separable

| λa.





post1(a) pre1(a, q)
.
postn(a) pren(a, q)

conditional

where the syntax of conditional micro-transformers is given in
Definition 3.11.

The identity micro-transformer returns the singleton of its input
a. A pointwise micro-transformer for A

def
= P(A1) applies a micro-

transformer trA1 for A1 pointwise on every element of the input
set X ∈ A. Note that trA returns a singleton whose element is a
set of values from A1. A separable micro-transformer for a product
domain A

def
= A1 × . . . × Ak applies a micro-transformer trAi for

Ai to each component ai of the input value separately (but possibly
refers to the context q). If A is a union domain A

def
= A1 ∪A2, then

a micro-transformer for A can either be identity or conditional.
A conditional micro-transformer consists of n cases: for i =

1, . . . , n, prei is a (non-empty) conjunction of literals, where a lit-
eral is a precondition query or its negation. A precondition query
is a function from a and q to true or false. We require that pre-
conditions are disjoint and total. Each precondition prei defines
an equivalence class of input values with a uniform behavior, and
the corresponding postcondition posti specifies how a value in this
class is transformed. Each posti is a (possibly empty) set of post-
condition terms. A postcondition term defines an output value of
the micro-transformer as function of the input value a, without re-
ferring to the query parameters q. An important restriction of this
syntax is that conditional micro-transformers cannot invoke other
micro-transformers.

The restricted syntax of postcondition terms and precondition
queries, and requirements on preconditions are detailed in Sec-
tion 3.2.1.

The following example shows how we can easily encode any
specific IFDS problem using the conditional micro-transformer
syntax just defined.

EXAMPLE 3.7. In a specific IFDS problem, the dataflow facts are
known, e.g., D = {d1, d2, d3}, An example input/output relation
on these dataflow facts, shown on the right, can be encoded as a
conditional micro-transformer trD , as shown on the left. ¤

d2d1 d3

d2 d3d1

trD(d) =

{
d1, d2 d = d1

d3 d = d3

For a specific IFDS problem, we can easily compose micro-
transformers and get a composite micro-transformer in our syn-
tax. In general, however, some restrictions are required on condi-
tional micro-transformers to guarantee that the language of micro-
transformers is closed under composition.

trAS×Q(r) =

{ 〈a, δopen(s)〉 p ∈ M
〈a, δopen(s)〉, r p /∈ M ∧ 〈p, a〉 ∈ pts
r 〈p, a〉 6∈ pts

trAP (d) =

{
d π2(d) = f ∧ 〈π1(d), this〉 6∈ alias
d π2(d) 6= f ∧ d 6= p
p, this.f d = p

Table 1. Summary for the procedure init. In the typestate micro-
transformer, we use a instead of π1(r), and s instead of π2(r), to
denote the components of r = 〈a, s〉.

EXAMPLE 3.8. An abstract value for typestate is a set X of tu-
ples from D, defined in Example 3.3. An abstract transformer
tr : P(D) → P(D) is defined by tr(X) =

⋃
x∈X trD(x), where

the micro-transformer for D is separable.
Let x be 〈a, s, M, pts, alias〉:

trD(x) = trAS×Q(〈a, s〉)× trMustSet(M)× {pts} × {alias}
All micro-transformers for pts and alias are identity, because these
sets are carrying flow-insensitive information.

Table 1 shows the micro-transformers for the procedure init of
Fig. 2: a micro-transformer for typestate pairs, denoted by trAS×Q,
and a micro-transformer for the access paths in the must-set, de-
noted by trAP .

The typestate micro-transformer trAS×Q describes the effect
of the statement p.open(), the only statement in this procedure
which alters the typestate. The first case of this transformer de-
scribes a strong update of the typestate: if the must-set M of the
incoming value contains the access path p, then the resulting value
in the typestate domain is 〈a, δopen(s)〉, where δ is the transition re-
lation of the typestate automaton for FileComp. The second case
describes a weak update of typestate: if p may point to the alloca-
tion site a, according to a global points-to analysis pts, and there is
no must information about p in the incoming value, then the result
contains two values, one in which the typestate has changed, and
one in which it is preserved. The third case describes that the orig-
inal value is preserved, when p is known to must not point to the
allocation site a.

The must-set micro-transformer trMustSet(M) is defined point-
wise on the access paths in the set M , using the micro-transformer
for individual access paths, trAP (d). It describes the effect of the
statement this.f=p. Note that the “kill” effect of the transformer
is described implicitly: if this may alias to some other variable v,
according to the global may-alias analysis alias, then the f -field of
the object pointed-to by v may change as a result of the destructive
update this.f=p. In this case, we cannot guarantee that v.f still
points to the tracked object after the update, and, thus, an access
path of the form v.f where v may be aliased with this, will not be
propagated by this transformer. ¤

3.2.1 Restrictions on Conditional Micro-Transformers
In this section, we describe syntactic restrictions on preconditions
and postconditions that ensure that conditional micro-transformers
are closed under composition.

We start by giving the syntax of terms that we use in precondi-
tions and postconditions. A term can refer to specific values that ap-
pear in the transformed code fragment s, e.g., it can explicitly refer
to program variables that appear in s, members of the set [[VarId]]s.
Values that appear in the rest of the code are referred to “symboli-
cally” using the parameters a and q. The fact that we do not explic-
itly refer to these values in the transformer allows us to concisely
describe the behavior of the code fragment s when the number of
different contexts is large (interprocedural analysis) or even infinite

(modular analysis). Moreover, a term can refer to function symbols
such as f : B → B, for some domain B, whose semantics is inde-
pendent of the analyzed program.

A term in T s
A→B(a) denotes a value in domain B as a function

of the value of the parameter a from domain A.

DEFINITION 3.9. A term in T s
A→B(a) has the following syntax:

T s
A→B(a) ::= a if B = A

| v if v ∈ [[B]]s
| f(t) if t ∈ T s

A→B(a), f : B → B is symbolic
|πi(t) if πi(C) = B, t ∈ pA

C(a)
| 〈t1,. . . ,tk〉 if B=B1×. . .×Bk, and

∀i.1 ≤ i ≤ k : ti ∈ T s
A→Bi

(a)

For example, in Table 1, δopen(π2(r)) is a term in T init
AS×Q→Q(r),

which refers to the function δopen symbolically.
There are no special restrictions on the syntax of terms that can

be used in a postcondition of a conditional micro-transformer: for
a domain A and a code fragment s, any term in T s

A→A(a) can be
used in the postcondition. We restrict the precondition queries to
guarantee that micro-transformers are closed under composition,
and that their composition can be done automatically.

DEFINITION 3.10. Given a code fragment s, and a domain A, a
precondition query is defined by the following syntax:

Cs
A(a, q) ::= t = v if v ∈ [[B]]s

| t = ρj(q) if ρj(Q) = B, B is invertible, ρj(q) 6= a
| t ∈ ρj(q) if ρj(Q) = P(B), B is invertible

where t is a term in T s
A→B(a).

A precondition is a conjunction of literals, where a literal
is a precondition query from Cs

A(a, q) or its negation. We use
Pres

A(a, q) to denote the set of all preconditions.

In the first case, a precondition query is an equality test of a term
and a specific value, independent of q. In the second case, it is an
equality test of a term and a query parameter. In the third case, it
is a set membership test of a term in a set described by a query
parameter.

The restricted structure of the query will allow us to compute the
weakest precondition of a query and guarantee that the (simplified)
result is in the language of our preconditions. The most important
restriction is that domain B associated with the query parameter be
invertible,2 as defined in Section 3.2.2.

For example, in Table 1, we use the query p ∈ M where p is
an access path and the corresponding domain AP is required to be
invertible.

It is worth noting here that the language of preconditions is
closed under conjunction. Also, the language of postcondition
terms is closed under substitution. Thus, the language of precondi-
tions is also closed under substitution of these terms. We rely on
these facts, among others, to show that the result of our composition
algorithm is in the language of our micro-transformers.

Moreover, given a code fragment, the language of (normalized)
terms and queries are finite, assuming no symbolic functions are
used. We rely on this to show that the algorithm for summary
generation terminates and the summaries are finite.

Notations Let s1 and s2 be two code fragments. For terms t1 ∈
T s1

A→B(a) and t2 ∈ T s1
A→A(a), we use t1[a → t2] to denote the

term in T s1∪s2
B→A (a) obtained by substitution of t2 instead of a in

t1. For a term t ∈ T s1
A→B(a) and a specific value w ∈ [[A]]s2 , we

use t(w) to denote the (unique) value of the term obtained by re-
placing a with w in t. Note that t(w) ∈ [[B]]s1∪s2 . Similarly, for
a precondition query c ∈ Cs1

A (a, q), and a value u ∈ [[cl(Q)]]s2
of the query parameters referred to by the query, c(w, u) denotes

2 For the second test, the requirement on B can be weakened.

the value true or false. We lift this interpretation to boolean com-
binations of queries in the usual way. For a micro-transformer trs1

A ,
values w and u as above, if s1 contains s2, we use trs1

A (w) to de-
note the set of specific values in [[A]]s2 returned by the transformer
when its input value is w and the the query parameters has value u.

Now that we have defined the restrictions on terms and queries,
we are finally ready to define the restrictions on conditional micro-
transformers.

Given a code fragment s, the effect of a conditional micro-
transformer on A can be decomposed into equivalence classes of
values in [[A]]s with a uniform behavior, and each equivalence class
is described by one of the cases in the micro-transformer. The
following conditions require that every input value satisfies the
precondition of exactly one case in a micro-transformer.

DEFINITION 3.11 (Conditional Micro-Transformer Syntax). Given
a code fragment s and a domain A, a conditional micro-transformer
trs

A is defined by

trs
A = λa.

{
post1 pre1

.
postn pren

where
• for all i = 1, . . . , n, posti ⊆ T s

A→A(a),
• for all i = 1, . . . , n, prei ∈ Pres

A(a, q),
• for every code fragment s1 that contains s, for every value

u ∈ [[cl(Q)]]s1 , w ∈ [[A]]s1 , there exists a unique i, 1 ≤ i ≤ n,
such that prei(w, u) is true.

We rely on these conditions to provide an efficient composition
algorithm for conditional transformers, as explained in Sec. 4.
Remark. A conditional transformer can represent the ‘’kill” effect
of a statement using cases whose postcondition is an empty set (in
the examples, these cases are omitted). A transformer can repre-
sent the “gen” effect of a statement using a designated value Λ,
propagated by every pointwise transformer (similar to the use of Λ
in (Reps et al. 1995; Sagiv et al. 1996b)). In typestate abstraction,
for example, we use Λ cases to model allocation. The transformer
trAS×Q(r) for an allocation statement x = new FileComp() at
allocation site aL contains the case with precondition r = Λ,
whose postcondition is the singleton 〈aL, init〉. For brevity, we
omit the discussion about Λ from this paper.

3.2.2 Invertible Micro-Transformers
As we will see in Section 4, the composition algorithm for con-
ditional micro-transformers uses the invert operation to compute
the reverse-image of some micro-transformers. The success of the
composition algorithm relies on the ability of invert to compute
simple precondition on the input values of a micro-transformer for
which the micro-transformer yields a certain value. This motivates
the following definition.

DEFINITION 3.12 (Invertible). Let trs1
B be a micro-transformer

for domain B and code fragment s1. The micro-transformer trs1
B is

invertible iff there exists a computable operation invert such that
for every domain A that queries B, for every code fragment s2 and
term t in T s2

A→B(a), the result of invert(trs1
B , t) is

∨k
i=1 ψi where

• for all i = 1, . . . , k, ψi is of the form (b = t′) ∧ pre, where
t′ ∈ T s1∪s2

A→B (a), pre ∈ Pres1∪s2
A (a, q), and (b = t′) is

optional;
• for every code fragment s that contains both s1 and s2, for every

u ∈ [[cl(Q)]]s, w ∈ [[A]]s, and v ∈ [[B]]s,

t(w) ∈ trs1
B (v) iff there exists i such that ψi(w, v, u) is true.

Domain B is invertible when for all basic statements, the micro-
transformers for B are invertible.

compose(tr12A , tr23A) =



tr12A tr23
A is identity

tr23A tr12
A is identity

λX.{⋃x∈X tr13A1
(x)} tr12A , tr23A are pointwise,

A = P(A1),
tr13A1

= compose(tr12A1
, tr23A1

)

λ〈a1, . . . , ak〉. tr12A , tr23A are separable,
tr13A1

(a1)× . . .× tr13Ak
(ak) A=A1×. . .×Ak, ∀i.1≤ i≤ k :

tr13Ai
= compose(tr12Ai

, tr23Ai
)

composeCond(tr12A , tr23A) tr12A , tr23A are conditional

Table 2. Composition algorithm for micro-transformers. The input
is a pair of micro-transformers tr12A , tr23A : A → P(A). The output
is a micro-transformer for A. The subroutine composeCond is
given in Fig. 5.

The following lemma defines syntactic restrictions on a condi-
tional micro-transformer that guarantee that they are invertible.

LEMMA 3.13. A conditional micro-transformer trs
B is invertible if

every case i in trs
B , and every term t in posti satisfy one of the

following:
• t is b,
• prei is of the form b = w ∧ pre′ where w ∈ [[B]]s and b does

not appear in pre′ (and we place no restrictions of t),
• t is of the form 〈t1, . . . , tk〉, and there is a set of indexes

J = {j1, . . . , jm} ⊆ {1, . . . , k}, such that prei is of the form

(πj1(b) = w1) ∧ . . . ∧ (πjm(b) = wm) ∧ pre′

where for all j = 1, . . . , m, wj ∈ [[B]]s, b does not appear in
pre′, and for all j = 1, . . . , k, either j ∈ J or tj is πj(b),

• t is f(t′), f−1 is a function, and t′ and prei satisfy one of the
conditions above (with t′ in place of t).

A degenerate case of invertible domain is immutable domain.

DEFINITION 3.14 (Immutable Domain). Domain B is immutable
when for all basic statements, the micro-transformers for B are
identity.

The invert of operation for immutable domain B is essentially
identity: invert(trB , t) is (b = t).

In our typestate example, the domains Pts and Alias are im-
mutable, and the domain AP is invertible.

To guarantee that the weakest precondition is computable, our
method restricts domains of certain query parameters to be invert-
ible, depending on the way the query parameter is used in precon-
ditions. Not all domains need to be invertible.

4. Composition Algorithm
In this section, we describe a composition algorithm for micro-
transformers and employ it for computing functional composition
of abstract transformers, the basis of our framework for generating
procedure summaries.

Given a pair of micro-transformers tr12A , tr23A : A → P(A), the
algorithm, shown in Table 2, returns a micro-transformer for A that
precisely captures the composed effect of tr12A and tr23A .

The main part of the algorithm is the subroutine composeCond
shown in Fig. 5, which composes conditional micro-transformers,
as described Sec. 4.1. This procedure computes a generalized
weakest precondition of queries that appear in the preconditions
of a micro-transformer, as described in Sec. 4.2. It relies on a de-
cision procedure for checking consistency of preconditions, and
for simplification of summaries, to guarantee that the summary is
precise and that its size is bounded, as explained in Sec. 4.3.

composeCond(tr12A , tr23A) {
// tr12

A = {〈pre12
i , post12i 〉 | 1 ≤ i ≤ n}

// tr23
A = {〈pre23

j , post23j 〉 | 1 ≤ j ≤ m}
tr13

A := ∅
for each 〈pre12, post12〉 in tr12

A

k := |post12|
for each set of indexes I := {i1, . . . , ik}
s.t. 1 ≤ il ≤ m for all l = 1, . . . , k {
// cover I with maximally-consistent
// (possibly-overlapping) sets
cover := ∅ // map: P(I) to pairs of pre/post conds
for each J ⊆ I {
if not exists K ∈ domain(cover) s.t. J ⊆ K {
// J not subsumed by other index set in cover

pre13 := simplify-pre(pre12 ∧∧|J|
j=1 wp(pre23

ij
, tj))

post13 :=
⋃|J|

j=1{simplify-term(t[a → tj]) | t ∈ post23ij
}

if pre13 is consistent {
// remove all index sets K subsumed by J
cover := cover \ {K 7→ 〈..〉 | K ⊆ J}
// add J to cover
cover := cover ∪ [J 7→ DDNF(〈pre13, post13〉)]
}
}
}
tr13

A := tr13
A ∪ image(cover)

}
}
return tr13

A
}

Figure 5. Composition algorithm for conditional transformers.

4.1 Composition of Conditional Transformers
The composed transformers can be viewed as relating values in
three domains: (A1), (A2), and (A3), where tr12 transforms values
between (A1) and (A2), and tr23 transforms values between (A2)
and (A3). The key to composition is to express the restriction
imposed by the composition of tr12A and tr23A on the values of (A2)
as restrictions on (A1) and (A3).

Intuitively, our composition algorithm operates in two stages,
depicted in Fig. 1(c):

(I) computing the reverse image of preconditions of tr23A under
the transformer tr12A . The result is that all preconditions in
tr23A , previously expressed in (A2), are now expressed in
(A1).

(II) computing the forward image of the postconditions of tr12A

under the transformer tr23A . The result is that all postcondi-
tions in tr12A , previously in (A2), are now expressed in (A3).

To make the composition process feasible, our approach lever-
ages the structure of transformers.

Fig. 5 shows the pseudo-code of the composition algorithm of
conditional micro-transformers. Note that the computation of pre13

corresponds to the intuitive step (1) above (realized as computation
of the weakest precondition). Note that the computation of post13

corresponds to the intuitive step (2) above (realized as substitution).
Both steps are making calls to simplification procedures. Also note
that the iteration in the algorithm is required to handle postcondi-
tions with multiple terms, and it guarantees that all cases are cov-
ered.

The following example illustrates how the composition algo-
rithm obtains a summary using the typestate abstraction of Exam-
ple 3.8.

EXAMPLE 4.1. We illustrate how the composition algorithm ob-
tains a summary of the procedure readData shown in Fig. 2 from
those of init and process.

The summary trinit
AS×Q(〈a, s〉) for init is shown in Table 1.

Consider the composition of the first case of the summary for init

〈π1(r), δopen(π2(r))〉 if p ∈ M

with the following case of the summary trprocess
AS×Q (r) for process:

〈π1(r), δclose(π2(r))〉 if this.f ∈ M

We use t(r) to denote the term 〈π1(r), δopen(π2(r))〉.
First, the composition algorithm finds a new precondition on

the values of input parameter r and the query parameter q under
which the output value t(r) of init satisfies the precondition
this.f ∈ M of process. Towards this end, we compute the
(generalized) weakest precondition of this.f ∈ M , as described
in Section 4.2.

wp(this.f ∈ M, t(r)) = p ∈ M

The result is conjoined with the precondition p ∈ M , which hap-
pens to be the same syntactically, in this simple example, there-
fore, the new precondition is consistent. Under the new precondi-
tion, we replace r by 〈π1(r), δopen(π2(r))〉 in the postcondition
〈π1(r), δclose(π2(r))〉 of process. After simplification, we get
the postcondition

〈π1(r), δclose(δopen(π2(r)))〉
Now consider the composition of the third case of the summary

of init with the same case of the summary of process. The
weakest precondition for this.f ∈ M is the same as before,
because the query does not depend on r. We conjoin the weakest
precondition p ∈ M with the precondition 〈p, π1(r)〉 6∈ pts from
init. The consistency checker finds out that the new precondition
is inconsistent with the integrity rule “if p ∈ M then 〈p, π1(r)〉 ∈
pts”. Hence, the algorithm does not generate a new postcondition
for this combination of cases. ¤

4.2 Weakest Preconditions
To obtain a composed transformer, we use the operation wp to
express each precondition pre23

j that appears in tr23A and refers to
the intermediate state in (A2), in terms of the initial state, in (A1).

The weakest-precondition operation wp for code fragment s
takes as input a precondition pre and a term t, and returns a boolean
combination of preconditions.

Formally, given a code fragment s2, a precondition pre ∈
Pres2

A (a, q), and t ∈ T s
A→A(a), we define wp inductively on the

syntax of pre:

wp(pre, t)
def
=




wp(pre1, t) ∧ wp(pre2, t) if pre is pre1 ∧ pre2

¬wp(pre1, t) if pre is ¬pre1

lift(ρj(q), invert(trs
B , t′′)) if pre is t′ ∈ ρj(q) or t′ = ρj(q),

and t′∈T s
A→B(a), t′′

def
= t′[a → t]

pre[a → t] otherwise

The weakest precondition is closed under conjunction, as usual.
It is also closed under negation, because all transformers that we
use are deterministic. For the base case of a precondition, a query
in Cs

A(a, q), we use substitution, as usual, when the query is inde-
pendent of q.

Recall from Definition 3.10 that if ρj(q) is used in a precon-
dition query then then micro-transformer trB must be invertible.
When the query is of the form t ∈ ρj(q), or t = ρj(q), we com-
pute weakest precondition using invert for transformer trB and
lift. The idea for handling weakest precondition computation of a
set membership query of the form t ∈ ρj(q) is to break it down
into equality queries on the underlying domain, compute the weak-
est precondition in the underlying domain, and lift the result back

to a membership query in the powerset domain. Intuitively, this cor-
responds to observing the effect of an update on a set membership
query by observing its effect on individual members of the set.

Technically, we compute weakest precondition pointwise, where
invert(trB , t) operation, defined in Section 3.2.2, computes the re-
verse image of trB , and the lift replaces every equality queries over
B by membership queries over P(B).

The invert operation is implemented as:

invert(trB , t)
def
=

n∨
i=1

ki∨

l=1

simplify-pre(t = tl ∧ prei)

For each term tl in a postcondition of trB , we unify t with tl and
conjoin it with the corresponding precondition to get a condition on
b that guarantees that the result of applying transformer trB to b is
t. Since trB is invertible, the result of simplification is a disjunction
of preconditions each of which is of the form b = t′ ∧ pre1, where
t′ ∈ TA→B(a) and b does not occur in pre1. This syntactic form
allows us, for instance, to lift each pointwise query b = t′ that
appears in invert(trB , t) to the membership query t′ ∈ ρj(q).
Formally, lift(ρj(q), ψ) is defined inductively on the syntax of ψ:

lift(ρj(q), ψ)
def
=




lift(ρj(q), ψ1) ∨ lift(ρj(q), ψ2) if ψ is ψ1 ∨ ψ2

lift(ρj(q), ψ1) ∧ lift(ρj(q), ψ2) if ψ is ψ1 ∧ ψ2

¬lift(ρj(q), ψ1) if ψ is ¬ψ1

t′ ∈ ρj(q) if ψ is b = t′ and ρj(Q) = P(B)
t′ = ρj(q) if ψ is b = t′ and ρj(Q)is not P(B)
ψ otherwise

EXAMPLE 4.2. The weakest precondition used in Example 4.1 is
generated by breaking the weakest precondition computation to
work pointwise on the underlying domain.

wp(this.f ∈ M, t) = lift(M, invert(trinit
AP , this.f))

To compute invert(trinit
AP , this.f), we use the micro-transformer

trinit
AP shown in Table 1. After unifying this.f with each term in the

postcondition of trinit
AP , and conjoining it with the corresponding

precondition, we get the following cases:
this.f = d ∧ π2(d) = f ∧ 〈π1(d), this〉 /∈ alias
this.f = d ∧ π2(d) 6= f ∧ d 6= p
this.f = this.f ∧ d = p
this.f = p ∧ d = p

We simplify and check consistency of each of these cases. The
first case implies that 〈π1(this.f), this〉 /∈ alias and after sim-
plification of car and tuple-constructor, we get 〈this, this〉 /∈
alias. The consistency checker detects inconsistency with the re-
flexivity property of alias. The last case is inconsistent because
this.f 6= p (recall that this is a syntactic equality of access paths).
Only the third case survives the consistency check and we get
that invert(trinit

AP , this.f) is d = p. Lifting this equality con-
straint back to the powerset domain yields the membership query
p.ε ∈ M , as a result of wp. ¤

Remark. In general, the result of wp(pre1, t) is a boolean com-
bination of conditions, whereas the syntax of conditional micro-
transformers does not allow disjunctions in preconditions. There-
fore, in the algorithm shown in Fig. 5, we use the operation DDNF,
defined as follows:

DDNF(〈pre, post〉) = {〈pre′, post〉 | pre′ ∈ DDNF(pre)}
where DDNF(pre) converts a boolean combination of conditions
pre into an equivalent disjunction of disjoint consistent precondi-
tions. In the worst-case, this operation can cause exponential blow-
up. In practice, the size of the composite transformers and their pre-
conditions is expected to remain small, because many of the gen-
erated preconditions are inconsistent. Our experiments in Section 6
support this hypothesis.

4.3 Consistency Checking and Simplification
The composition algorithm relies on the computable operations
simplify-term and simplify-pre on terms and preconditions, respec-
tively, to limit the size of its result without losing precision. These
operations are essential for showing that the language of summaries
is finite and that the algorithm for generating summaries (Sec-
tion 5.1) terminates.

In addition, the weakest precondition computation (described
in Section 4.2) depends on the ability of simplify-pre to produce a
new precondition whose pointwise representation can be lifted and
expressed in terms of the query parameters.

Intuitively, the purpose of simplify-term and simplify-pre is to
replace nested terms and complex preconditions by equivalent sim-
pler ones.

The challenge in simplify-term is to handle postconditions with
nested functions, whose semantics depends on the domain A. For
example, the result of composition shown in Example 4.1 contains
the term δclose(δopen(π2(r))) with nested δ functions, although the
input micro-transformers did not have nesting. Subsequent compo-
sitions might create deeper nesting of δ functions. In Section 5.2.3,
we show how to simplify nested δs and guarantee that their size is
bounded.

The main challenge in simplify-pre is checking consistency, tak-
ing into account integrity rules IR, properties Prop, and structural
rules for tuple-constructors and selectors, e.g., πi(〈. . . , ai, . . .〉) =
ai. 3 In particular, the consistency check guarantees that all precon-
ditions in the composite micro-transformer are consistent.

4.4 Properties of the Composition Algorithm

Consider a (top-level) abstract domain A def
= P(Q). Given abstract

transformers tr12, tr23 : A → A, expressed by micro-transformers
tr12Q , tr23Q , respectively, we generate an abstract transformer that
captures the composed effect of tr12 and tr23. The result is an ab-
stract transformer expressed by the micro-transformer that captures
the composed effect of tr12Q and tr23Q :

compose(tr12, tr23) = λX.
⋃

x∈X

compose(tr12Q , tr23Q)(x)

The composition algorithm for micro-transformers is in Table 2.

DEFINITION 4.3 (Compatible Transformers). Abstract transform-
ers tr12 and tr23 are compatible iff they are expressed using com-
patible micro-transformers. Micro-transformers tr12A and tr23A are
compatible iff one of them is identity, or both are pointwise, or both
are separable, or both are conditional, and the micro-transformers
for all components of A are compatible.

In particular, if tr12
A is a pointwise micro-transformer and tr23A is a

conditional micro-transformer, then they are not compatible.
The following theorem states that given two abstract transform-

ers tr12, tr23 : A → A that are compatible and defined by micro-
transformers, as in Section 3.2, the compose algorithm computes
their functional composition. Moreover, the result is a transformer
also expressed by micro-transformers.

THEOREM 4.4 (Composition Algorithm). If tr12, tr23 : A → A
are compatible abstract transformers, the result of compose(tr12, tr23)
is a transformer that is also expressed via micro-transformers and
computes the function λa.tr23(tr12(a)).

Let T denote the set of abstract transformers of basic statements
that satisfy the following properties: (a) every abstract transformer
is expressed by micro-transformers, (b) all micro-transformers for

3 Extension of the Theory of Lists (Nelson and Oppen 1980) to k-tuples.

the same domain A are compatible. The language of summaries,
denoted by L, is the closure of T under composition.

The following theorem defines sufficient conditions of simplify-term
and simplify-pre that guarantee that the language of summaries is
finite. If the language L is finite, then the algorithm for computing
procedure summaries terminates and produces finite summaries.

THEOREM 4.5 (Finite Language of Summaries). The language
of summaries L is finite if the following properties hold:
1. Bound on the size of terms: for every code fragment stmt, there

exists a bound K such that for every pair of terms t1(a) and
t2(a) over stmt, |simplify-term(t2(t1(a)))| ≤ K.

2. Bound on the size of preconditions: for every code fragment
stmt, there exist a bound N such that for every pair of pre-
conditions pre1 and pre2 over stmt, |simplify-pre(pre2 ∧
pre1)| ≤ N .

When the micro-transformers contain function symbols or in-
tegrity rules, the user of our framework need to supply appropriate
simplify-term and simplify-pre.

5. Generating Procedure Summaries
In this section we describe how the composition algorithm is put
to use in a general framework for generating procedure summaries
and show how to instantiate the framework for several applications.

5.1 Framework
Our framework computes procedure summaries by performing ab-
stract interpretation over a domain in which the abstract values are
sets of micro-transformers. Intuitively, an abstract value at a pro-
gram point L represents the abstract transformer for the code frag-
ment between procedure entry and the program point L.

To compute the summary of a procedure, our framework starts
with an initial identity transformer that maintains the original value
of procedure parameters. It then proceeds to compute the fixed-
point of propagating this initial transformer through the procedure.
In order to apply the effect of a statement to an incoming abstract
value, each incoming micro-transformer is composed with the basic
transformer of the statement. In order to apply the effect of a
procedure invocation to an incoming abstract value, each incoming
micro-transformer is composed with the summary of the invoked
procedure (after replacing formals with actuals). When the analysis
of a procedure reaches a fixed-point, the summary of the procedure
is the set of micro-transformers at the point of procedure exit.

Join Operation Our framework supports an optional join opera-
tion for micro-transformers. Given two micro-transformers tr1

A and
tr2

A, we define a join operation tr1
A t tr2

A such that it emulates the
join of the underlying domain A transformed by tr1

A and tr2
A. That

is, for every a in A, (tr1
A t tr2

A)(a) = tr1
A(a) t tr2

A(a).
Remark. Our framework is designed for abstract domains with
finite-height. For infinite-height domains, precise procedure sum-
maries are not well-defined because termination of abstract inter-
preter is achieved using widening, which does not guarantee pre-
cision, e.g., result may depend on order of chaotic iteration. It is
possible to encode widening in our framework, similarly to join,
but we lose the ability to guarantee precision.

5.2 Applications
First, we show that specific IFDS and IDE problems can be en-
coded in our framework. Second, we show that parametric version
of interesting IFDS and IDE problems can be encoded in our frame-
work: typestate verification with aliasing and constant propagation
with aliasing (the latter requires join).

5.2.1 IFDS
In a (specific) IFDS problem (Reps et al. 1995), the dataflow facts
are known D = {d1, . . . , dk}. The specific abstract domain is
P(D). The abstract transformers for basic statements are of the
form: tr(X) =

⋃
d∈X trD(d) where trD is a conditional micro-

transformer of the form

trD(d) =





S1 d = d1

.
Sk d = dk

and Si ⊆ D for all i = 1, . . . , k. In particular, all preconditions
in the conditional transformers for a specific IFDS domain are
always of the limited form d = di for some 1 ≤ i ≤ k, i.e., the
preconditions do not refer to query parameters; all postconditions
are subsets of dataflow facts. An example transformer is shown in
Example 3.7.

5.2.2 IDE
A (specific) abstract domain for IDE problems (Sagiv et al. 1996b)
with environment D → L is defined by Env

def
= P(D × L)

with deterministic property, and the symbols are known D =
{d1, . . . , dk}. Note that the abstract domain has no parameters, as
we are encoding a specific IFe problem, in contrast to a modular
version of an IDE problem, considered in Section 5.2.4.

The abstract transformers are tr(env) =
⋃
〈d,l〉∈env trD×L(〈d, l〉)

where trD×L is a conditional micro-transformer of the form

trD×L(〈d, l〉) =





post1 d = d1

.
postk d = dk

and posti = {〈dj , fdi,dj (l)〉 | j = 1, . . . , k}, for all i =
1, . . . , k. The function fdi,dj : L → L captures the effect that
the value of di in the input environment has on the value of dj

in the output environment. The efficient representation of functions
fdi,dj , which is one of the requirements in the IDE framework,
guarantees that (i) the join operation on micro-transformers can
be implemented using the join for L, and (ii) simplify-term can be
implemented using the composition for L such that there is a bound
on the size of terms.

5.2.3 Typestate
We have described the domains used for our typestate abstraction
in Example 3.3, and the structure of typestate transformers in Ex-
ample 3.8. Fig. 6 shows the conditional micro-transformers for up-
dating a pair r ∈ AS × Q under a typestate operation x.op(),
and allocation. It uses the query parameters pts and M where the
transformer trAP is invertible. Fig. 7 shows the conditional micro-
transformer for updating must information under the basic state-
ments. The query parameter alias is used to perform strong update
for x.f = null. We do not show statements for which the trans-
formers are identity. Note that the typestate abstraction of (Fink
et al. 2006), which we follow in this example, treats branch state-
ments as identity.

We show that for a given procedure P , the summaries for
AS × Q domain are of bounded size. The difficulty is that after
substitution, the postcondition of a case can contain terms t with
arbitrarily nested δ’s. We simplify these terms using the fact that
they represent states of the finite-state automaton F , as follows.

We say that terms t, t′ ∈ Σ∗ are equivalent when for all states
q ∈ Q, t(q) and t′(q) is the same state. The idea is to keep only
the shortest term from each equivalence class of this relation. The
length of shortest terms t is bounded by the diameter of F . (This is
not a problem in practice, because the automata we consider, which
represent typestate properties, are usually small.)

Statement trAS×Q(M)(r)
x.op() 〈a, δop(s)〉 〈x, a〉 ∈ pts ∧ x ∈ M

〈a, δop(s)〉, r 〈x, a〉 ∈ pts ∧ x /∈ M
r 〈x, a〉 /∈ pts

x = new aL 〈aL, sinit〉 r = Λ
r r 6= Λ

Figure 6. Typestate abstraction: transformers for a pair r of
tracked allocation site a

def
= π1(r), and its typestate s

def
= π2(r).

Statement trAP (a)(d)
x = null d π1(d) 6= x
x = y d, 〈x, π2(d)〉 π1(d) = y

d π1(d) 6= y
x = y.f d, x.ε d = y.f

d d 6= y.f
x.f = null d π2(d) = f ∧ ¬〈π1(d), x〉 ∈ alias

d π2(d) 6= f
x.f = y d, x.f d = y.ε

d d 6= y.ε
x = new aL x.ε d = Λ ∧ a = aL

d d 6= Λ ∧ π1(d) 6= x

Figure 7. Typestate abstraction: transformers for an access path d.

However, it is worth noting that the size of a summary can be
exponential in the size of VarIdP , if the procedure distinguishes
between different aliasing contexts.

5.2.4 Constant Propagation with Aliasing
Linear constant propagation is a variant of constant propagation
that was given an efficient solution by the IDE framework of (Sa-
giv et al. 1996a). We deal with a generalization of this problem
to pointers and aliasing. We solve the parametric version of this
problem, which allows us to generate summaries in a modular way,
without knowing the rest of the program.

The abstract domain, parametric in VarId and FieldId, is defined
by Env ×Alias, where

Env = P(CPA) with deterministic
CPA = VarId × (Z ∪ {>})
Alias = P(AP ×AP) with reflexive, symmetric, transitive

An abstract value is 〈env, alias〉 where env is a set of pairs 〈d, l〉,
d is an access path, l is an integer if the value of the access path
is known to be constant l, or >, otherwise; alias is the set of
access paths that may be aliased, according to a flow-insensitive
information, i.e., the domain Alias is immutable.

Consider the following example procedure:

void cpex(T p, T q, int y) {
if (?) { p.f = y + 5; } else { q.f = 42; }

}

The procedure cpex takes two parameters of type T, and an
integer parameter. We assume that the type T has an integer field f .
The procedure assigns the field f for the object pointed to by either
q or p.

An abstract transformer for CPA is defined by

trEnv×Alias(〈env, alias〉) = trEnv(env)× {alias}
trEnv(env) = {⋃〈d,l〉∈env trCPA(〈d, l〉)}

and trCPA(〈d, l〉) is a conditional micro-transformer that depends
on the statement.

The micro-transformers for q.f = 42 and p.f = y + 5 are:

trq.f = 42
CPA (〈d, l〉) =




〈d, 42〉 d = q.f
〈d, 42〉 d 6= q.f ∧ π2(d) = f ∧ 〈q, π1(d)〉 ∈ alias ∧ l = 42
〈d,>〉 d 6= q.f ∧ π2(d) = f ∧ 〈q, π1(d)〉 ∈ alias ∧ l 6= 42
〈d, l〉 otherwise

trp.f = y + 5
CPA (〈d, l〉) =




∅ d = p.f
〈d, l〉, 〈p.f, l + 5〉 d = y.ε
〈d, l〉 d 6= p.f ∧ d 6= y.ε ∧ π2(d) = f∧

〈p, π1(d)〉 ∈ alias ∧ l 6= > ∧ 〈y, l− 5〉 ∈ env
〈d,>〉 d 6= p.f ∧ d 6= y.ε ∧ π2(d) = f∧

〈p, π1(d)〉 ∈ alias ∧ l 6= > ∧ 〈y, l− 5〉 /∈ env
〈d, l〉 otherwise

Note that the micro-transformers use the query parameters
alias. Also, the micro-transformer trp.f = y + 5

CPA , which defines the
effect on the elements of env, uses env as a query parameter. This
kind of dependency is supported by our composition algorithm,
because CPA is invertible.

If the input access path d may be aliased with p.f , then the
assignment p.f = 42 may modify the value of d in env, denoted
by l. If l is the same as the value of y − 5 in env, the new value of
d is l. Otherwise, the result is >. Note that we do not need to know
what the value of y is, only whether it is the same as l − 5 or not.

6. Prototype Implementation
We have implemented a prototype as a proof-of-concept for our
approach. This prototype is capable of analyzing Java programs
and computing procedure summaries. We used our prototype to
compute summaries of several small benchmarks.

The goals of our experiments are: (i) to validate the correctness
of the derived summaries; (ii) to evaluate the sizes of summaries
in practice, and in particular check whether summaries grow expo-
nentially.

We have integrated our algorithm into the analysis framework
of (Fink et al. 2006). We use this to drive our summary compu-
tation. For some examples, we used this to validate the results of
summarization against results of a whole-program analysis.

The heart of our implementation is the symbolic composition
algorithm of Section 4. For conditional micro-transformers, we im-
plemented an incremental version of Fig. 5. This algorithm requires
non-trivial consistency checking and simplification of formulas. Ef-
fectively, the procedure simplify-term and simplify-pre are imple-
menting consistency checkers specialized for the typestate domain
with must information for access paths of length up to 1.

The experiments described in Table 3 were used as a prelimi-
nary evaluation of our composition algorithm and for studying the
behavior of summaries. We only report a narrow view of the re-
sults that is indicative of the maximal sizes of summaries for our
benchmarks.

The first three benchmarks in the table are small examples: the
running example, a recursive example, and an example of simple
composition. Next is the library of Ganymed SSH-2 for Java, fol-
lowed by benchmarks from the The Ashes suite. Every row in the
table corresponds to the analysis of a benchmark with a typestate
property. The typestate property describes the correct behavior of
the type shown in the table.

For every experiment, we report the number of procedure nodes
(i.e., nodes in the call graph) summarized (sum), the number of pro-
cedure summarized into skip (skipsum). We refer to the number of
compositions used to create a summary as the rank of the summary,
and also report the maximal number of compositions used to create
a summary (MR). We only report data for procedure summaries,
and not for intermediate summaries created during the analysis of

bench property sum skip MR Typestate Must
sum cases avg. max cases avg. max

@MR pre #case @MR pre #case
Running filecomp 15 8 9 13 2.92 13 32 5.16 32
Recursive filecomp 15 7 6 6 1.67 6 5 1.6 5
Simple filecomp 16 8 6 6 1.67 6 5 0.4 5
Ganymed socket 2353 2092 11 704 8.55 704 6 1.83 6

transmgr 2356 2102 37 145 7.23 145 11 2 11
session 2356 2133 4 4 1 4 1 1 1

jlex stack 737 643 5 3 0.66 3 1 0 1
printstr 697 593 7 40 5.25 64 1 0 1
enum 733 632 19 268 5.11 272 1 1 1

rhino printstr 1266 1056 9 512 9 512 1 0 1

Table 3. Sample experimental results.

a procedure. We also report the maximal number of cases in sum-
maries of the maximal rank (cases @MR), and the average number
of terms in their preconditions (avg. pre). These are the dominant
factors in the size of our summaries, and should give an impression
of the maximal summaries used in a program. In addition to these,
we also report the maximal number of cases observed in a summary
of any rank (max#case).

Our experiments show that our composition algorithm can be
used to successfully summarize procedures of real (albeit small)
programs. A more subtle point is that they also show that sum-
maries can sometime decrease in size (in this table, only for JLex).

For some of our benchmarks, the required must alias informa-
tion is rather limited. For example, for the Stack type in JLex,
only a single instance is created, and it is used without aliases, and
never passed as a parameter. Similar simple usage patterns are ob-
served for Session in Ganymed.

There are interesting trade-offs between the cost of simplifica-
tion and the sizes of summaries, as well as many other implemen-
tation details. These are beyond the scope, and space limitations, of
this paper.

The prototype is not yet engineered to compete with the opti-
mized implementation of (Fink et al. 2006). We plan to develop
a robust implementation of our composition algorithm that will
enable us to compare modular analysis to (Fink et al. 2006). In
practice, a combination of symbolic summaries and explicit input-
output tables may be used for optimizing performance.

7. Related Work
Interprocedural and modular analyses General approaches to
interprocedural analysis are described in (Sharir and Pnueli 1981;
Cousot and Cousot 1978). Already in (Cousot and Halbwachs
1978), it is shown that a procedure’s effect can be computed using
linear-relation analysis. In (Cousot and Cousot 2002), the general
concept of symbolic relational separate analysis is described, but
does not provide languages for expressing procedure summaries.
Our approach could be thought of as a realization of this concept
providing specialized languages for expressing procedure sum-
maries.

Precise and efficient interprocedural dataflow analysis algo-
rithms are presented in (Reps et al. 1995; Sagiv et al. 1996b) for
special classes of problems. IFDS problems (Reps et al. 1995) can
be encoded in our approach, by representing each flow fact as a
propositional parameter. IDE problems (Sagiv et al. 1996b) can be
encoded by representing each symbol of an environment as a basic
parameter.

In contrast to (Sagiv et al. 1996b), we consider in Section 5.2.4
the problem of linear constant propagation in presence of aliasing
and in a modular setting, where the variables in the rest of program
are unknown. It is not clear whether this problem can be encoded
in the IDE framework (in a naı̈ve encoding, the set of symbols

would not be finite). Precise and efficient interprocedural analysis
of (Müller-Olm and Seidl 2004), specialized for finding all affine
relationships between program variables, subsumes the problem of
linear constant propagation considered in (Sagiv et al. 1996b), but
does not deal with aliasing.

It is challenging to compute precise procedure summaries for
an arbitrary calling context. To enable modular analysis, many
analyses compute approximate summaries. A common approach is
to analyze the procedure in a symbolic context. For example, (Ball
et al. 2005) introduces auxiliary variables to record the input values
of the procedure, and uses predicates defined by both the program
variables and the auxiliary variables. Then, the result of the analysis
can be interpreted as a relation between the auxiliary variables,
which denote input values, and the output values. However, the
predicates might not be expressive enough to capture the precise
summary.

In interprocedural analysis based on pushdown systems, e.g., (Reps
et al. 2005), summaries are created as a byproduct of an analysis.

Another approach is to specialize the summary generation for
a particular problem, to discover which contexts are relevant. For
example, Xie and Aiken (2005) create summaries for checking
correct use of locks. They use a SAT procedures to enumerate all
the relevant calling contexts.

Recently, Gulwani and Tiwari (2007) introduced a method for
generating precise procedure summaries in the form of constraints
on the input variables of the procedure that must be satisfied for
some appropriate generic assertion involving output variables of
the procedure to hold at the end of the procedure. Their method
is based on computing weakest preconditions of a generic asser-
tion. To guarantee termination of the analysis, they preform second-
order unification to strengthen and simplify the weakest precondi-
tions. Our composition algorithm computes weakest preconditions
of certain queries, as described in Section 4.2, and relies on simpli-
fication, but does not use strengthening.

Modular Pointer Analyses Our work has been motivated by
modular points-to analysis of (Chatterjee et al. 1999). Their work
infers distinct relevant contexts and computes precise information
for each such context, parametric in aliasing between abstract loca-
tions at the entry of a procedure. This information can be expressed
using symbolic summaries with query parameters on alias and non-
alias. We add to these ideas in several ways: (i) we formulate the
notion of concise summaries for a more general class of summaries,
going beyond the points-to setting; (ii) we add the property that our
summaries are as precise as re-analyzing the procedure, and this is
a fundamental requirement that drives our treatment of summaries;
(iii) we introduce a framework that allows us to generate concise
summaries for a class of abstract domains and transformers.

The modular pointer analysis of (Cheng and Hwu 2000) is an
adaptation of (Chatterjee et al. 1999) to work with the entire C lan-
guage. From our perspective, the most notable difference is the fact
that (Cheng and Hwu 2000) uses access paths to express context
conditions where (Chatterjee et al. 1999) only uses conditions on
aliasing between abstract locations at the entry of a procedure.

Modular pointer analyses in (Whaley and Rinard 1999; Salcianu
2006) make best-case aliasing assumptions at the entry of a proce-
dure, but in order to be sound, compute an approximation of the
default semantics by not performing strong updates (except in spe-
cial cases, see (Salcianu 2006)). The summary is later specialized
for a given aliasing situation at a call site. Because the summary
computation is based on approximation of default semantics, the
summary could be less precise than an (ideal) non-modular analy-
sis.

Typestate Verification DeLine and Fähndrich (2004,2002) present
a type system for typestate properties for objects. They can assume

must-alias properties for a limited program scope, and thus ap-
ply strong updates allowing typestate transitions. Their approach
is limited to programs for which an expression can be assigned a
unique type at a given program point. As opposed to that, our mod-
ular typestate analysis is context-sensitive, matching the precision
of (Fink et al. 2006). In general, our approach for designing mod-
ular analysis is an alternative for using type systems for the same
domain.

8. Conclusions and Future Work
For proving non-trivial properties of programs, program analyses
use expressive abstract domains. We aim at improving scalability
of these analyses, without compromising the precision, by using
precise, concise and efficient procedure summaries. In this paper,
we have described a class of complex abstract domains, for which
we can generate summaries with the desirable properties, thereby
advancing the state-of-the-art in this area.

The focus of this work has been the automatic composition
of summaries (with precision guarantees). This is a key step, but
not the only one, in making modular analysis practical. In future
work, we plan to explore techniques that can trade-off precision for
scalability (e.g., as done in (Chatterjee et al. 1999) by limiting sizes
of conditions).

Finally, the expressivity of micro-transformers is inherently lim-
ited. Nevertheless, we believe that many interesting problems can
be encoded using micro-transformers. We plan to further investi-
gate the expressivity of our framework by applying it to additional
problems, such as modular pointer analysis.

Acknowledgments
We thank Mooly Sagiv, Noam Rinetzky, Tal Lev-Ami, and the
anonymous reviewers for their comments on earlier drafts of this
paper.

References
T. Ball, T. D. Millstein, and S. K. Rajamani. Polymorphic predicate abstrac-

tion. ACM Trans. Program. Lang. Syst., 27(2):314–343, 2005.
R. Chatterjee, B. G. Ryder, and W. A. Landi. Relevant context inference.

In POPL, pages 133–146, 1999.
B.-C. Cheng and W.-M. W. Hwu. Modular interprocedural pointer analysis

using access paths: design, implementation, and evaluation. In PLDI,
pages 57–69, 2000.

P. Cousot and R. Cousot. Modular static program analysis. In CC, pages
159–178, 2002. ISBN 3-540-43369-4.

P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction of approximation of fixed
points. In POPL, 1977.

P. Cousot and R. Cousot. Static determination of dynamic properties of
recursive procedures. In E.J. Neuhold, editor, Formal Descriptions of
Programming Concepts, (IFIP WG 2.2, St. Andrews, Canada, August
1977), pages 237–277. North-Holland, 1978.

P. Cousot and R. Cousot. Systematic design of program analysis frame-
works. In POPL, pages 269–282, 1979.

P. Cousot and N. Halbwachs. Automatic discovery of linear restraints
among variables of a program. In POPL, pages 84–96, 1978.

M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitive program verification
in polynomial time. In PLDI, pages 57–68, 2002.

R. DeLine and M. Fähndrich. Adoption and focus: Practical linear types for
imperative programming. In PDLI, pages 13–24, June 2002.

R. DeLine and M. Fähndrich. Typestates for objects. In ECOOP, pages
465–490, 2004.

N. Dor, S. Adams, M. Das, and Z. Yang. Software validation via
scalable path-sensitive value flow analysis. In ISSTA, 2004. URL
http://doi.acm.org/10.1145/1007515.

J. Field, D. Goyal, G. Ramalingam, and E. Yahav. Typestate verification:
Abstraction techniques and complexity results. In SAS, pages 439–462,
2003.

S. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay. Effective typestate
verification in the presence of aliasing. In ISSTA, pages 133–144, 2006.

J. S. Foster, T. Terauchi, and A. Aiken. Flow-sensitive type qualifiers. In
PLDI, pages 1–12, 2002.

Ganymed SSH-2 for Java. Ganymed SSH-2 for java.
http://www.ganymed.ethz.ch/ssh2/.

S. Gulwani and A. Tiwari. Computing procedure summaries for interpro-
cedural analysis. In ESOP, pages 253–267, 2007.

R. Jhala and R. Majumdar. Interprocedural analysis of asynchronous pro-
grams. In POPL, pages 339–350, 2007.

M. Müller-Olm and H. Seidl. Precise interprocedural analysis through
linear algebra. In POPL, pages 330–341, 2004.

G. Nelson and D. C. Oppen. Fast decision procedures based on congruence
closure. J. ACM, 27(2):356–364, 1980.

S. Qadeer and D. Wu. Kiss: keep it simple and sequential. In PLDI, pages
14–24, 2004.

T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis
via graph reachability. In POPL, pages 49–61, 1995.

T. Reps, S. Schwoon, S. Jha, and D. Melski. Weighted pushdown systems
and their application to interprocedural dataflow analysis. Sci. Comput.
Program., 58(1-2):206–263, 2005.

N. Rinetzky, M. Sagiv, and E. Yahav. Interprocedural shape analysis for
cutpoint-free programs. In Proc. Static Analysis Symp., 2005.

M. Sagiv, T. Reps, and S. Horwitz. Precise interprocedural dataflow analysis
with applications to constant propagation. Theor. Comput. Sci., 167(1-2):
131–170, 1996a. ISSN 0304-3975. doi: http://dx.doi.org/10.1016/0304-
3975(96)00072-2.

M. Sagiv, T. W. Reps, and S. Horwitz. Precise interprocedural dataflow
analysis with applications to constant propagation. Theor. Comput. Sci.,
167(1&2):131–170, 1996b.

A. Salcianu. Pointer Analysis for Java Programs: Novel Techniques and
Applications. PhD thesis, Massachusetts Institute of Technology, Cam-
bridge, Massachusetts, USA, 2006.

M. Sharir and A. Pnueli. Two approaches to interprocedural data ow
analysis. In S.S. Muchnick and N.D. Jones, editors, Program Flow
Analysis: Theory and Applications, chapter 7, pages 189–234. Prentice-
Hall, Englewood Cliffs, NJ, 1981.

R. E. Strom and S. Yemini. Typestate: A programming language concept
for enhancing software reliability. IEEE Trans. Software Eng., 12(1):
157–171, 1986.

The Ashes suite. The ashes suite. http://www.sable.mcgill.ca/ashes/.
J. Whaley and M. Rinard. Compositional pointer and escape analysis for

java programs. In OOPSLA, pages 187–206, 1999.
Y. Xie and A. Aiken. Scalable error detection using boolean satisfiability.

In POPL, pages 351–363, 2005.

