
3D Printable Word Cloud

Project by: Dror Dahan

Instructed by: Prof. Mirela Ben Chen

About

The project goal is to implement a word cloud generator in 3D while taking in
parameters such as "line thickness" so that the final result is suitable for 3D printing.

It is implemented as a Blender plugin and written in Python.
It has a comfortable user interface for setting a large number of parameters and
running the algorithm.

The final result can then be exported for 3D printing in various formats:
.dae .abc .3ds .fbx .ply .obj .x3d .stl

Parameters and Considerations

(for installation instructions see install.pdf)

Control dimensions of base box.

Histogram Word Scale – Word scale is relative to the number of
times each word appears in the text.

Random Word Scale – Word scale is random.

Spiral Positions / Grid Positions – Select array of positions that
will be used to position words on base box.
(See below for visualization)

Input text file.

When using “Random Word Scale” it is possible to
only read unique words or also have duplicates.

Select font file.

Average polygon budget per letter.
Should be higher for fonts with high detail.

Extrusion height for words.

Range of rotation and scaling for words
(Rotation is always random in the range).

Select whether to apply scaling in z axis or keep
uniform word height.

Control spacing between words.

"Check thickness” will calculate min thickness for each
word, if the word is too thin then it will not be used.

In the case of random word scale, words may be scaled
beyond their random value in order to match required
thickness.

Triangulate mesh of final result.

After each run some stats are displayed:

Number of words that passed thickness check.
Number of words successfully placed.

Spiral positions:

Grid Positions:

Algorithm Outline

- Add the base box mesh.

- Create array of positions and rotations (x , y , r)
 Positions depend on the chosen type: "Spiral Positions" or "Grid Positions".
 Rotations are random in range: (rotateMin, rotateMax)

- Read words from file
Words may be unique or not, depending on the chosen options.
For histogram scaling, count the number of appearances of each word.

- Add word meshes
 Create flat word text object.
 Set text font.
 Set material color with a random hue.
 Convert the word from curve object to mesh.
 Apply decimate.
 Extrude the word.

- Minimum thickness is calculated for each word (see minThickness algorithm below)

- Minimum word scale is calculated for each word.
wordMinScale = lineThickness / wordMinThickness

- Words are scaled in range (scaleMin , scaleMax)
 The user can select between two options for scaling:

 1) Histogram Scaling: word scale is relative to the number of appearances in text.

 2) Random Scaling: word scale is random in range (scaleMin , scaleMax)
but not less than min(wordMinScale , scaleMax)

 If chosen scale is less than wordMinScale then the word is deleted.

- Words are sorted by size, descending order.

- Words are positioned.
For positioning use a displaced copy of words in order to enforce word spacing.
 Loop words:
 Loop positions:
 Transform word to position
 Check for intersection with previously positioned words (using BVHTree class)
 Check if the word is partially outside of base boundary.

 If one of the checks is true, then continue to next position
 Otherwise, a good position was found, continue to next word
 End loop

 No position was found, delete current word.
 End loop

- Words are joined together to a single mesh.

- Apply union with the base mesh.

- Triangulate final result.

MinThickness Algorithm

The goal is to measure the minimum thickness of an object.
Minimum thickness value is used to decide if a word can be 3D printed or not.

First we notice that any <180° angle has minimum thickness approaching 0 and will not be
printed perfectly because corners get rounded.

For example:

Obviously we don’t want all objects to return with minThickness close to 0.

Our simple solution is to ignore thickness that is measured between adjacent faces.

Algorithm:

initialize minThickness = ∞
loop faces:
 set direction = −faceNormal
 set direction . z = 0
 loop vertices of face:
 cast a ray from current vertex position in direction of direction

 if the ray hit a non adjacent face:
 set thickness = dist (vertex , hitLocation)
 set minThickness = min(minThickness , thickness)

Results

1) Using default font, histogram scaling, uniform word height.

2) Using comic font, histogram scaling, also scale word height.
The comic font is more round and allows for smaller words with the same line thickness.

3) Using flowers font, random scaling mode.
Input text has one letter per word.

4) 3D printed result

Limitations and future work

minThickness function is not geometric

In the minThickness algorithm we ignore thickness between adjacent faces as a simple
solution to allow corner rounding. This makes the result depend on meshing and not purely on
geometry. For example:

The left mesh returns minThickness = ∞ , while the right mesh returns some small value

minThickness function does not find the exact minimum

We ray cast in −normal direction for each face that a vertex belongs to.
In practical cases this method gives a good thickness estimate.

Yet it’s possible to think of an edge case that would not work well
For example:

In order to increase accuracy for such edge cases, we would need to ray cast in many more
directions per vertex.

Performance

For every word all positions are tested, in order, until a position is found where there is no
intersection with previous words.
This may cause a slow run when trying to place a large number of words.
The same method is used in a 2D word cloud algorithm, but it tests for overlapping pixels
between words which is much cheaper.

Testing intersections in 2D or a more intelligent method for choosing positions could help to
improve run time.

